Skip to main content

Signatures of Quantum Phase Transitions via Quantum Information Theoretic Measures

  • Chapter
  • First Online:
Quantum Quenching, Annealing and Computation

Part of the book series: Lecture Notes in Physics ((LNP,volume 802))

Abstract

Quantum phase transitions (QPTs) in many body systems occur at \(T = 0\) brought about by tuning a non-thermal parameter, e.g. pressure, chemical composition or external magnetic field [1, 2]. In a QPT, the ground state wave function undergoes qualitative changes at the transition point. The transition is driven by quantum fluctuations whereas ordinary phase transitions occurring at nonzero temperatures are driven by thermal fluctuations. Like a thermal phase transition, a QPT can be first order, second order or higher order. The thermal critical point, associated with a second-order phase transition, is characterized by the presence of thermal fluctuations on all length scales resulting in a divergent correlation length. The free energy and the thermodynamic functions develop singularities as temperature \(T\rightarrow T_{\textrm{c}}\), the critical temperature. At the quantum critical point (QCP), quantum fluctuations occur on all length scales leading to a divergent correlation length. The ground state and related physical quantities become non-analytic as the tuning parameter g tends to the critical value g c . The influence of QPTs extends into the finite T part of the phase diagram so that experimental detection of QPTs is possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Sachdev, Science 288, 475 (2000).

    Article  ADS  Google Scholar 

  2. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 1999).

    Google Scholar 

  3. L. Amico, R. Fazio, A. Osterloh and V. Vedral, Rev. Mod. Phys. 80, 517 (2008).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen and U. Sen, Adv. Phys. 56, 2 (2007).

    Article  Google Scholar 

  5. R. Fazio and H. van der Zant, Phys. Rep. 355, 235 (2001).

    Article  ADS  MATH  Google Scholar 

  6. O. Gühne and G. Tóth, Phys. Rep. 474, 1 (2009).

    Article  MathSciNet  ADS  Google Scholar 

  7. M. Plenio and V. Vedral, Contemp. Phys. 39, 431 (1998).

    Article  ADS  Google Scholar 

  8. A. Osterloh, L. Amico, G. Falci, and R. Fazio, Nature (London) 416, 608 (2002).

    Article  ADS  Google Scholar 

  9. T.J. Osborne and M.A. Nielsen, Phys. Rev. A 66, 032110 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  10. G. Vidal, J.I. Latorre, E. Rico, and A. Kitaev, Phys. Rev. Lett. 90, 227902 (2003).

    Article  ADS  Google Scholar 

  11. L.-A. Wu, M.S. Sarandy and D.A. Lidar, Phys. Rev. Lett. 93, 250404 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  12. T.R. Oliveira, G. Rigolin, M.C. de Oliveira and E. Miranda, Phys. Rev. Lett. 97, 170401 (2006).

    Article  Google Scholar 

  13. H.-D. Chen, J. Phys. A 40, 10215 (2007).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. A. Tribedi and I. Bose, Phys. Rev. A 75, 042304 (2007).

    Article  ADS  Google Scholar 

  15. A. Tribedi and I. Bose, Phys. Rev. A 77, 032307 (2008).

    Article  ADS  Google Scholar 

  16. S -J. Gu, arxiv: 0811.3127v1.

    Google Scholar 

  17. H.T. Quan, Z. Song, X. F. Liu, P. Zanardi, and C. P. Sun, Phys. Rev. Lett. 96, 140604 (2006).

    Article  ADS  Google Scholar 

  18. P. Zanardi and N. Paunković, Phys. Rev. E 74, 031123 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  19. M. Cozzini, R. Ionicioiu and P. Zanardi, Phys. Rev. B 76, 104420 (2007).

    Article  ADS  Google Scholar 

  20. H.-Q. Zhou, e-print arXiv:0704.2945.

    Google Scholar 

  21. P. Zanardi, M. Cozzini and P. Giorda, J. Stat. Mech.: Theory Exp. L02002 (2007).

    Google Scholar 

  22. P. Zanardi, H.T. Quan, X. Wang and C.P. Sun, Phys. Rev. A 75, 032109 (2007).

    Article  ADS  Google Scholar 

  23. S. Chen, L. Wang, S.J. Gu and Y. Wang, Phys. Rev. E 76, 061108 (2007).

    Article  ADS  Google Scholar 

  24. A. Tribedi and I. Bose, Phys. Rev. A 79, 012331 (2009).

    Article  ADS  Google Scholar 

  25. G. Chaboussant, P.A. Crowell, L. P. Lévy, O. Piovesana, A. Madouri and D. Mailly, Phys. Rev. B 55, 3046 (1997).

    Article  ADS  Google Scholar 

  26. B.C. Watson et al., Phys. Rev. Lett. 86, 5168 (2001).

    Article  ADS  Google Scholar 

  27. C.P. Landee, M.M. Turnbull, C. Galeriu, J. Giantsidis and F.M. Woodward, Phys. Rev. B 63, 100402 (2001).

    Article  ADS  Google Scholar 

  28. G. Chaboussant et al., Eur. Phys. J. B 6, 167 (1998).

    Article  ADS  Google Scholar 

  29. K.M. O’Connor and W.K. Wootters, Phys. Rev. A 63, 052302 (2001)

    Article  ADS  Google Scholar 

  30. W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).

    Article  ADS  Google Scholar 

  31. N. Paunković, P.D. Sacramento, P. Nogueira, V.R. Vieira and V.K. Dugaev, Phys. Rev. A 77, 052302 (2008).

    Article  ADS  Google Scholar 

  32. H.-M. Kwok, C.-S. Ho and S.- J. Gu, Phys. Rev. A 78, 062302 (2008).

    Article  ADS  Google Scholar 

  33. J. Ma, L. Xu, H. Xiong and X. Wang, Phys. Rev. E 78, 051126 (2008).

    Article  ADS  Google Scholar 

  34. J. Ma, L. Xu and X. Wang, arXiv:0808.1816.

    Google Scholar 

  35. H.-N. Xiong, J. Ma, Z. Sun and X. Wang, Phys. Rev. B 79, 174425 (2009).

    Article  ADS  Google Scholar 

  36. F. Verstraete, M. Popp and J.I. Cirac, Phys. Rev. Lett. 92, 227902 (2004).

    Google Scholar 

  37. I. Bose and E. Chattopadhyay, Phys. Rev. A 66, 062320 (2002).

    Article  ADS  Google Scholar 

  38. F. C. Alcaraz, A. Saguia and M. S. Sarandy, Phys. Rev. A 70, 032333 (2004).

    Article  ADS  Google Scholar 

  39. J. Vidal, R. Mosseri and J. Dukelsky, Phys. Rev. A 69, 054101 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  40. S. Chen, L. Wang, Y. Hao and Y. Wang, Phys. Rev. A 77, 032111 (2008).

    Article  ADS  Google Scholar 

  41. E. Dagotto and T.M. Rice, Science 271, 618 (1996).

    Article  ADS  Google Scholar 

  42. E. Dagotto, Rep. Prog. Phys. 62, 1525 (1999).

    Article  ADS  Google Scholar 

  43. E. Dagotto, Rev. Mod. Phys. 66, 763 (1994)

    Article  ADS  Google Scholar 

  44. E. Dagotto, J. Riera and D. Scalapino, Phys. Rev. B 45, 5744 (1992).

    Article  ADS  Google Scholar 

  45. S. Gopalan, T.M. Rice and M. Sigrist, Phys. Rev. B 49, 8901 (1994).

    Article  ADS  Google Scholar 

  46. I. Bose and S. Gayen, Phys. Rev. B 48, 10653 (1993).

    Article  ADS  Google Scholar 

  47. H. Nishimori, AIP Conf. Proc. 248, 269 (1992).

    Article  ADS  Google Scholar 

  48. T. Sakai and M. Takahashi, Phys. Rev. B 43, 13383 (1991).

    Article  ADS  Google Scholar 

  49. M.T. Batchelor, X.W. Guan, N. Oelkers and Z. Tsuboi, Adv. Phys. 56, 465 (2007).

    Article  ADS  Google Scholar 

  50. F. Mila, Eur. Phys. J. B 6, 201 (1998).

    Article  ADS  Google Scholar 

  51. C.N. Yang and C.P. Yang, Phys. Rev. 150, 327 (1966).

    Article  ADS  Google Scholar 

  52. F.D.M. Haldane, Phys. Rev. Lett. 47, 1840 (1981).

    Article  ADS  Google Scholar 

  53. T. Giamarchi and A.M. Tsvelik, Phys. Rev. B 59, 11398 (1999).

    Article  ADS  Google Scholar 

  54. U. Glaser, H. Büttner and H. Fehske, Phys. Rev. A 68, 032318 (2003).

    Article  ADS  Google Scholar 

  55. M.C. Arnesen, S. Bose and V. Vedral, Phys. Rev. Lett 87, 017901 (2001)

    Article  ADS  Google Scholar 

  56. D. Gunlycke, V. M. Kendon, V. Vedral and S. Bose, Phys. Rev. A 64, 042302 (2001).

    Article  ADS  Google Scholar 

  57. R. Chitra and T. Giamarchi, Phys. Rev. B 55, 5816 (1997).

    Article  ADS  Google Scholar 

  58. H. J. Schulz, Phys. Rev. B 22, 5274 (1980).

    Article  ADS  Google Scholar 

  59. I. Affleck, Phys. Rev. B 43, 3215 (1991).

    Article  ADS  Google Scholar 

  60. D. Kaszlikowski, A. Sen (De), U. Sen, V. Vedral and A. Winter, Phys. Rev. Lett. 101, 070502 (2008).

    Article  ADS  Google Scholar 

  61. T. Roscilde et al., Phys. Rev. Lett. 93, 167203 (2004).

    Article  ADS  Google Scholar 

  62. T. Roscilde et al., Phys. Rev. Lett. 97, 147208 (2005).

    Article  ADS  Google Scholar 

  63. F.G.S.L. Brandão, New J. Phys. 7, 254 (2005).

    Article  ADS  Google Scholar 

  64. J. Zhang, X. Peng, N. Rajendran and D. Suter, Phys. Rev. Lett. 100, 100501 (2008).

    Article  ADS  Google Scholar 

  65. G. Tóth, Phys. Rev. A 71, 010301(R) (2005).

    Article  ADS  Google Scholar 

  66. M.R. Dowling, A.C. Doherty and S.D. Barlett, Phys. Rev. A 70, 062113 (2004).

    Article  ADS  Google Scholar 

  67. Č. Brukner, V. Vedral and A. Zeilinger, Phys. Rev. A 73, 012110 (2006).

    Article  ADS  Google Scholar 

  68. M. Wieśniak, V. Vedral and Č. Brukner, New J. Phys. 7, 258 (2005).

    Article  ADS  Google Scholar 

  69. I. Bose and A. Tribedi, Phys. Rev. A 72, 022314 (2005).

    Article  ADS  Google Scholar 

  70. T. Veŕtesi and E. Bene, Phys. Rev. A 73, 134404 (2006).

    Google Scholar 

  71. S. Ghosh, T.F. Rosenbaum, G. Aeppli and S.N. Coppersmith, Nature (London) 425, 48 (2003)

    Article  ADS  Google Scholar 

  72. V. Vedral. Nature 425, 28 (2003).

    Article  ADS  Google Scholar 

  73. N. B. Christensen et al., Proc. Natl. Acad. Sci. 104, 15264 (2007).

    Article  ADS  Google Scholar 

  74. V. Vedral, Nature 453, 1004 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgement

A. T. is supported by the Council of Scientific and Industrial Research, India, under Grant No. 9/15 (306)/ 2004-EMR-I.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. Bose or A. Tribedi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bose, I., Tribedi, A. (2010). Signatures of Quantum Phase Transitions via Quantum Information Theoretic Measures. In: Chandra, A., Das, A., Chakrabarti, B. (eds) Quantum Quenching, Annealing and Computation. Lecture Notes in Physics, vol 802. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11470-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11470-0_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11469-4

  • Online ISBN: 978-3-642-11470-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics