Skip to main content

Influence of Local Moment Fluctuations on the Mott Transition

  • Chapter
  • First Online:
Quantum Quenching, Annealing and Computation

Part of the book series: Lecture Notes in Physics ((LNP,volume 802))

  • 2086 Accesses

Abstract

The Mott metal to insulator transition is a remarkable phenomenon observed in strongly correlated materials, where the localization of electronic waves is driven by on-site electron–electron repulsion (see [7] for a review). Although the appearance of a Mott gap is clearly a charge-related effect, magnetism is expected to play a key role in elucidating the true nature of this phase transition. Indeed, since the Mott insulating state is purely paramagnetic, local moments are well-defined objects between their formation at high temperature (about the local Coulomb interaction ) and their ultimate ordering at the Neel temperature. This offers a window for the Mott transition to occur, in which the behavior of these local spin excitations is yet to be clearly understood. The simplest situation lies in case where the low-temperature magnetic ordering is first order, as in Cr-doped \({\textrm V}_2{\textrm O}_3\). Accordingly magnetic fluctuations should be expected to be weak, so that many predictions can be made from a single-site approach such as the Dynamical Mean Field Theory (DMFT) [4]. In particular, the fact that a low-temperature metallic state leads upon heating to an insulating phase can be understood as a Pomeranchuk effect , where the entropy gain benefits the state with magnetic degeneracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Auerbach Interacting Electrons and Quantum Magnetism (Springer-Verlag, New York, 1994).

    Book  Google Scholar 

  2. A. J. Bray and M. A. Moore J. Phys. C: Solid St. Phys., 13, L655 (1980).

    Article  ADS  Google Scholar 

  3. S. Florens and A. Georges, Phys. Rev. B 66, 165111 (2002).

    Article  ADS  Google Scholar 

  4. A. Georges, G. Kotliar, W. Krauth and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  5. G. Grinstein, Fundamental Problems in Statistical Mechanics VI, E.G.D Cohen (ed.) (Elsevier, New York, 1950).

    Google Scholar 

  6. J. A. Hertz, Phys. Rev.B 14, 1165 (1976).

    Article  ADS  Google Scholar 

  7. M. Imada, A. Fujimori and Y. Tokura, Rev. Mod. Phys. 70, 4 (1998).

    Article  Google Scholar 

  8. C. Janani, S. Florens, T. Gupta and R. Narayanan, to be published.

    Google Scholar 

  9. F. Kagawa, T. Itou, K. Miyagawa, and K. Kanoda, Phys. Rev. B 69, 064511 (2004).

    Article  ADS  Google Scholar 

  10. G. Kotliar, E. Lange and M. J. Rozenberg, Phys. Rev. Lett. 84, 22 (2000).

    Article  Google Scholar 

  11. S. Lefebvre, P. Wzietek, S. Brown, C. Bourbonnais, D. Jérome, C. Mézière, M. Fourmigué, and P. Batail, Phys. Rev. Lett. 85, 5420 (2000).

    Article  ADS  Google Scholar 

  12. P. Limelette, P. Wzietek, S. Florens, A. Georges, T.A. Costi, C. Pasquier, D. Jérome, C. Mézière, and P. Batail, Phys. Rev. Lett. 91, 016401 (2003).

    Article  ADS  Google Scholar 

  13. J.W. Negele and H. Orland “Quantum Many-Particle Systems”, Frontiers in Physics, (Addison-Wesley, California and New York, 1988).

    Google Scholar 

  14. T. Ohashi, T. Momoi, H. Tsunetsugu, and N. Kawakami, Phys. Rev. Lett 100, 076402 (2008).

    Article  ADS  Google Scholar 

  15. S. Onoda and N. Nagaosa, J. Phys. Soc. Jap. 72, 2445 (2003).

    Article  ADS  Google Scholar 

  16. O. Parcollet and A. Georges, Phys. Rev. B 59, 5341 (1999).

    Article  ADS  Google Scholar 

  17. H. Park, K. Haule, and G. Kotliar, Phys. Rev. Lett. 101, 186403 (2008); Soc. Jap. 72, 2445 (2003).

    Google Scholar 

  18. S. Sachdev and J. Ye, Phys. Rev, Lett. 70, 3339 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Janani , S. Florens , T. Gupta or R. Narayanan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Janani, C., Florens, S., Gupta, T., Narayanan, R. (2010). Influence of Local Moment Fluctuations on the Mott Transition. In: Chandra, A., Das, A., Chakrabarti, B. (eds) Quantum Quenching, Annealing and Computation. Lecture Notes in Physics, vol 802. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11470-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11470-0_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11469-4

  • Online ISBN: 978-3-642-11470-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics