Skip to main content

Quantum Phase Transition in the Spin Boson Model

  • Chapter
  • First Online:
Quantum Quenching, Annealing and Computation

Part of the book series: Lecture Notes in Physics ((LNP,volume 802))

Abstract

Quantum phase transitions (QPT) have recently become a widespread topic in the realm of modern condensed matter physics. QPT are phase transformations that occur at the absolute zero of temperature and are triggered by varying a temperature-independent control parameter like pressure, doping concentration, or magnetic field. There are various examples of systems showing quantum critical behavior, which include the antiferromagnetic transition in heavy fermion material like \({\textrm CeCu}_{6-x}{\textrm Au}_{x}\), that is brought about by changing the \({\textrm Au}\) doping [10]. Another prototypical example of a system exhibiting quantum critical behavior is the quantum Hall effect, wherein a two-dimensional electron gas is tuned, via an externally applied magnetic field, through a quantum critical point (QCP) that intervenes between two quantized Hall plateaux. Other examples of QPT include the ferromagnetic transition in metallic magnets as a function of applied pressure and the superconducting transition in thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Belitz, T.R. Kirkpatrick and T. Vojta, Rev. Mod. Phys. 77, 579 (2005).

    Article  ADS  Google Scholar 

  2. R. Bulla, N.-H. Tong and M. Vojta, Phys. Rev. Lett. 91, 170601 (2003).

    Article  ADS  Google Scholar 

  3. D.G. Clarke, T. Giamarchi and B. I. Shraiman, Phys. Rev. B 48, 7070 (1993).

    Article  ADS  Google Scholar 

  4. T.A. Costi, and G. Zarand, Phys. Rev. B, 59, 12398, (1999).

    Article  ADS  Google Scholar 

  5. V.J. Emery and A. Luther, Phys. Rev. B 9, 215 (1974).

    Article  ADS  Google Scholar 

  6. J.A. Hertz, Phys. Rev. B 14, 1165 (1976).

    Article  ADS  Google Scholar 

  7. A.I. Larkin and V.I. Mel’nikov, Sov. Phys. JETP 34, 656 (1972).

    ADS  Google Scholar 

  8. A.J. Leggett, S. Chakravarty, A.T. Dorsey, M.P.A. Fisher, A. Garg and W. Zwerger, Rev. Mod. Phys. 59, 1 (1987).

    Article  ADS  Google Scholar 

  9. Y. L. Loh, V. Tripathi and M. Turlakov, Phys. Rev. B 71, 024429 (2005).

    Article  ADS  Google Scholar 

  10. H. v. Löhneysen, A. Rosch, M. Vojta and P. Wölfle, Rev. Mod. Phys. 79, 1015 (2007).

    Article  ADS  Google Scholar 

  11. W. Mao, P. Coleman, C. Hooley and D. Langreth, Phys. Rev. Lett. 91, 207203 (2003).

    Article  ADS  Google Scholar 

  12. A.J. Millis, Phys. Rev. B 48, 7183 (1993).

    Article  ADS  Google Scholar 

  13. E. Novais, A.H. Castro Neto, L. Borda, I. Affleck and G. Zarand, Phys. Rev. B 72, 014417 (2005).

    Article  ADS  Google Scholar 

  14. V. N. Popov and S. A. Fedotov, Sov. Phys. JETP 67, 535 (1988).

    Google Scholar 

  15. S. Sachdev, Phys. Rev. B 55, 142 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  16. A.M. Sengupta, Phys. Rev. B 61, 4041 (2000).

    Article  ADS  Google Scholar 

  17. A.M. Sengupta and A. Georges, Phys. Rev. B 52, 10295 (1995).

    Article  ADS  Google Scholar 

  18. A. Shnirman and Y. Makhlin, Phys. Rev. Lett. 91, 207204 (2003).

    Article  ADS  Google Scholar 

  19. Q. Si and J. Lleweilun Smith, Phys. Rev. Lett. 77, 3339 (1996).

    Article  Google Scholar 

  20. M. Vojta, C. Buragohain and S. Sachdev, Phys. Rev. B 61, 15152 (2000).

    Article  ADS  Google Scholar 

  21. M. Vojta, N. Tong and R. Bulla, Phys. Rev. Lett. 94, 070604 (2005).

    Article  ADS  Google Scholar 

  22. A. Winter et al., Phys. Rev. Lett. 102, 030601 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgement

RN thanks Priyanka Mohan for generating some of the figures in this chapter. He also thanks her for discussions and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Florens , D. Venturelli or R. Narayanan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Florens, S., Venturelli, D., Narayanan, R. (2010). Quantum Phase Transition in the Spin Boson Model. In: Chandra, A., Das, A., Chakrabarti, B. (eds) Quantum Quenching, Annealing and Computation. Lecture Notes in Physics, vol 802. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11470-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11470-0_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11469-4

  • Online ISBN: 978-3-642-11470-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics