Skip to main content

Quench Dynamics of Quantum and Classical Ising Chains: From the Viewpoint of the Kibble–Zurek Mechanism

  • Chapter
  • First Online:
  • 2185 Accesses

Part of the book series: Lecture Notes in Physics ((LNP,volume 802))

Abstract

In most macroscopic systems, the state in the equilibrium undergoes a phase transition when the temperature is changed. In the ordinary phase transition, the correlation length and the relaxation time diverge at the critical point. Hence it takes infinitely long time for the state to evolve from a disordered state to an ordered state by lowering the temperature. Such a quasi-static motion of the state is ideal. However, a motion of a state by lowering the temperature with a finite speed is more familiar to us. For instance, a natural magnet is made from lava through a thermal quench. If the temperature is cooled with a finite speed across the critical point, the phase transition ends incompletely. Consequently the symmetry breaking occurs not globally but locally.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. B. Apolloni, C. Carvalho and D. de Falco, Stochastic Process. Appl. 33, 233 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  2. D.A. Battaglia, G.E. Santoro and E. Tosatti, Phys. Rev. E 71, 066707 (2005).

    Article  ADS  Google Scholar 

  3. P. Calabrese and J. Cardy, J. Stat. Mech., P04010 (2005).

    Google Scholar 

  4. P. Calabrese and J. Cardy, Phys. Rev. Lett. 96, 136801 (2006).

    Article  ADS  Google Scholar 

  5. T. Caneva, R. Fazio and G. E. Santoro, Phys. Rev. B 76, 144427 (2007).

    Article  ADS  Google Scholar 

  6. E. Canovi, D. Rossini, R. Fazio and G. E. Santoro, J. Stat. Mech. P03038 (2009).

    Google Scholar 

  7. M.A. Cazalilla, Phys. Rev. Lett. 97, 156403 (2006).

    Article  ADS  Google Scholar 

  8. V. Černý, J. Optimization Theory Appl. 45, 41 (1985).

    Article  MATH  Google Scholar 

  9. B. Damski and W.H. Zurek, Phys. Rev. A 73, 063405 (2006).

    Article  ADS  Google Scholar 

  10. A. Das and B.K. Chakrabarti, (eds.), Quantum Annealing and Related Optimization Methods, Lect. Notes Phy. (Springer-Verlag, Berlin, 2005).

    MATH  Google Scholar 

  11. A. Das and B.K. Chakrabarti, Rev. Mod. Phys. 80, 1061 (2008).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. D. Dhar and M. Barma, J. Stat. Phys. 22, 259 (1980).

    Article  ADS  Google Scholar 

  13. U. Divakaran, A. Dutta and D. Sen, Phys. Rev. B 78, 144301 (2008).

    Article  ADS  Google Scholar 

  14. U. Divakaran, V. Mukherjee, A. Dutta and D. Sen, J. Stat. Mech. P02007 (2009).

    Google Scholar 

  15. J. Dziarmaga, Phys. Rev. Lett. 95, 245701 (2005).

    Article  ADS  Google Scholar 

  16. J. Dziarmaga, Phys. Rev. B 74, 064416 (2006).

    Article  ADS  Google Scholar 

  17. E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren and D. Preda, Science 292, 472 (2001).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson and J.D. Doll, Chem. Phys. Lett. 219, 343 (1994).

    Article  ADS  Google Scholar 

  19. D.S. Fisher, Phys. Rev. B 51, 6411 (1995).

    Article  ADS  Google Scholar 

  20. D.S. Fisher, Physica A 263, 222 (1999).

    Article  MathSciNet  ADS  Google Scholar 

  21. M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, San Francisco, 1979).

    MATH  Google Scholar 

  22. R.J. Glauber, J. Math. Phys. 4, 294 (1963).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch and I. Bloch, Nature 415, 39 (2002).

    Article  ADS  Google Scholar 

  24. A.K. Hartmann and A.P. Young, Phys. Rev. B 64, 180404(R) (2001).

    ADS  Google Scholar 

  25. C. Itzykson and J.-M. Drouffe, Statistical Field Theory (Cambridge University Press, Cambridge, 1989).

    Book  Google Scholar 

  26. T. Kadowaki and H. Nishimori, Phys. Rev. E 58, 5355 (1998).

    Article  ADS  Google Scholar 

  27. T. Kadowaki, Thesis, Tokyo Institute of Technology, arXiv:quant-ph/0205020.

    Google Scholar 

  28. T.W.B. Kibble, J. Phys. A 9, 1387 (1976).

    Article  ADS  MATH  Google Scholar 

  29. T.W.B. Kibble, Phys. Rep. 67, 183 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  30. S. Kirkpatrick, C.D. Gelett and M.P. Vecchi, Science 220, 671 (1983).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. R. Martoňák, G.E. Santoro and E. Tosatti, Phys. Rev. B 66, 094203 (2002).

    Article  ADS  Google Scholar 

  32. R. Martoňák, G.E. Santoro and E. Tosatti, Phys. Rev. E 70, 057701 (2004).

    Article  ADS  Google Scholar 

  33. S. Morita and H. Nishimori, J. Math. Phys. 49, 125210 (2008).

    Article  MathSciNet  Google Scholar 

  34. O. Motrunich, S.-C. Mau, D.A. Huse and D.S. Fisher, Phys. Rev. B 61, 1160 (2000).

    Article  ADS  Google Scholar 

  35. V. Mukherjee, U. Divakaran, A. Dutta and D. Sen, Phys. Rev. B 76, 174303 (2007).

    Article  ADS  Google Scholar 

  36. F. Pellegrini, S. Montangero, G.E. Santoro and R. Fazio, Phys. Rev. B 77, 140404 (2008).

    Article  ADS  Google Scholar 

  37. A. Polkovnikov, Phys. Rev. B 72, 161201(R) (2005).

    Article  ADS  Google Scholar 

  38. S. Sachdev, Quantum Phase Transitions, (Cambridge University Press, Cambridge, 1999).

    Google Scholar 

  39. L.E. Sadler, J.M. Higbie, S.R. Leslie, M. Vengalattore and D.M. Stamper-Kurn, Nature 443, 312 (2006).

    Article  ADS  Google Scholar 

  40. G.E. Santoro, R. Martoňák, E. Tosatti and R. Car, Science 295, 2427 (2002).

    Article  ADS  Google Scholar 

  41. G.E. Santoro and E. Tosatti, J. Phys. A 39, R393 (2006).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. D. Sen, K. Sengupta and S. Mondal, Phys. Rev. Lett. 101, 016806 (2008).

    Article  ADS  Google Scholar 

  43. K. Sengupta, S. Powell and S. Sachdev, Phys. Rev. A 69, 053616 (2004).

    Article  ADS  Google Scholar 

  44. K. Sengupta, D. Sen and S. Mondal, Phys. Rev. Lett., 100, 077204 (2008).

    Article  ADS  Google Scholar 

  45. S. Suzuki and M. Okada, J. Phys. Soc. Jpn. 74, 1649 (2005).

    Article  ADS  Google Scholar 

  46. S. Suzuki, H. Nishimori and M. Suzuki, Phys. Rev. E 75, 051112 (2007).

    Article  ADS  Google Scholar 

  47. S. Suzuki, J. Stat. Mech., P03032 (2009).

    Google Scholar 

  48. C.N. Weiler, T.W. Neely, D.R. Scherer, A.S. Bradley, M.J. Davis and B.P. Anderson, Nature 455, 948 (2008).

    Article  ADS  Google Scholar 

  49. W.H. Zurek, Nature (London) 317, 505 (1985).

    Article  ADS  Google Scholar 

  50. W.H. Zurek, U. Dorner and P. Zoller, Phys. Rev. Lett. 95, 105701 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgement

The author acknowledges T. Caneva, G.E. Santoro, and H. Nishimori for fruitful discussions and comments. The present work is partially supported by CREST, JST, and by Grant-in-Aid for Scientific Research (No. 20740225) of MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Suzuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Suzuki, S. (2010). Quench Dynamics of Quantum and Classical Ising Chains: From the Viewpoint of the Kibble–Zurek Mechanism. In: Chandra, A., Das, A., Chakrabarti, B. (eds) Quantum Quenching, Annealing and Computation. Lecture Notes in Physics, vol 802. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11470-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11470-0_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11469-4

  • Online ISBN: 978-3-642-11470-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics