Look-Ahead Evolution for P Systems

  • Sergey Verlan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5957)


This article introduces a new derivation mode for P systems. This mode permits to evaluate next possible configurations and to discard some of them according to forbidding conditions. The interesting point is that the software implementation of this mode needs very small modifications to the standard algorithm of rule assignment for maximal parallelism. The introduced mode has numerous advantages with respect to the maximally parallel mode, the most important one being that some non-deterministic proofs become deterministic. As an example we present a generalized communicating P system that accepts 2 n in n steps in a deterministic way. Another example shows that in the deterministic case this mode is strictly more powerful than the maximally parallel derivation mode. Finally, this mode gives a natural way to define P systems that may accept or reject a computation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alhazov, A., Rogozhin, Y., Verlan, S.: Symport/antiport tissue P systems with minimal cooperation. In: Proc. ESF Exploratory Workshop on Cellular Computing (Complexity Aspects), Sevilla, Spain, pp. 37–52Google Scholar
  2. 2.
    Binder, A., Freund, R., Lojka, G., Oswald, M.: Implementation of catalytic P systems. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004. LNCS, vol. 3317, pp. 45–56. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Ciobanu, G., Pan, L., Păun, G., Pérez-Jiménez, M.J.: P systems with minimal parallelism. Theor. Comput. Sci. 378(1), 117–130 (2007)zbMATHCrossRefGoogle Scholar
  4. 4.
    Csuhaj-Varjú, E.: P automata. In: Mauri, G., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 19–35. Springer, Heidelberg (2005)Google Scholar
  5. 5.
    Freund, R., Verlan, S.: A formal framework for static (tissue) P systems. In: Eleftherakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2007. LNCS, vol. 4860, pp. 271–284. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Freund, R., Kogler, M., Verlan, S.: P automata with controlled use of minimal communication rules. In: Bordihn, H., et al. (eds.) Proc. of Workshop on Non-Classical Models for Automata and Applications, Wroclaw, Poland, pp. 107–119 (2009)Google Scholar
  7. 7.
    Frisco, P., Hoogeboom, H.: P systems with symport/antiport simulating counter automata. Acta Informatica 41(2-3), 145–170 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Oswald, M.: P Automata. PhD thesis. Vienna Univ. of Technology (2003)Google Scholar
  9. 9.
    Păun, Gh.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  10. 10.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer, Berlin (1997)zbMATHGoogle Scholar
  11. 11.
    Verlan, S., Bernardini, F., Gheorghe, M., Margenstern, M.: On communication in tissue P systems: conditional uniport. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 521–535. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Verlan, S., Bernardini, F., Gheorghe, M., Margenstern, M.: Generalized communicating P systems. Theor. Comput. Sci. 404(1-2), 170–184 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    The Membrane Computing Web Page,

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Sergey Verlan
    • 1
  1. 1.LACL, Département InformatiqueUniversité Paris EstCréteilFrance

Personalised recommendations