On the Power of Computing with Proteins on Membranes

  • Petr Sosík
  • Andrei Păun
  • Alfonso Rodríguez-Patón
  • David Pérez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5957)


P systems with proteins on membranes are inspired closely by switching protein channels. This model of membrane computing using membrane division has been previously shown to solve an NP-complete problem in polynomial time. In this paper we characterize the class of problems solvable by these P systems in polynomial time and we show that it equals PSPACE. Therefore, these P systems are computationally equivalent (up to a polynomial time reduction) to the alternating Turing machine or the PRAM computer. The proof technique we employ reveals also some interesting trade-offs between certain P system properties, as antiport rules, membrane labeling by polarization or the presence of proteins.


Polynomial Time Turing Machine Division Rule Membrane Computing Polynomial Time Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell, 4th edn. Garland Science, New York (2002)Google Scholar
  2. 2.
    Alhazov, A., Martín-Vide, C., Pan, L.: Solving a PSPACE-complete problem by P systems with restricted active membranes. Fundamenta Informaticae 58(2), 67–77 (2003)MathSciNetGoogle Scholar
  3. 3.
    Cardelli, L.: Brane calculi – interactions of biological membranes. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–280. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Frisco, P.: Computing with Cells. In: Advances in Membrane Computing. Oxford University Press, Oxford (2009)Google Scholar
  5. 5.
    Păun, A., Păun, G.: The power of communication: P systems with symport/antiport. New Generation Comput. 20(3), 295–306 (2002)zbMATHCrossRefGoogle Scholar
  6. 6.
    Păun, A., Popa, B.: P systems with proteins on membranes. Fundamenta Informaticae 72(4), 467–483 (2006)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Păun, A., Popa, B.: P systems with proteins on membranes and membrane division. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 292–303. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Păun, G.: Membrane Computing – An Introduction. Springer, Berlin (2002)zbMATHGoogle Scholar
  9. 9.
    Pérez-Jiménez, M.J.: A computational complexity theory in membrane computing. In: Păun, G., Pérez-Jiménez, M.J., Riscos-Núnez, A. (eds.) Tenth Workshop on Membrane Computing (WMC10), RGNC Report 3/2009, Sevilla, pp. 82–105. Universidad de Sevilla (2009)Google Scholar
  10. 10.
    Sosík, P.: The computational power of cell division in P systems: Beating down parallel computers? Natural Computing 2(3), 287–298 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Sosík, P., Rodríguez-Patón, A.: Membrane computing and complexity theory: A characterization of PSPACE. J. Comput. System Sci. 73(1), 137–152 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    van Emde Boas, P.: Machine models and simulations. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. A, pp. 1–66. Elsevier, Amsterdam (1990)Google Scholar
  13. 13.
    The P systems web page,

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Petr Sosík
    • 1
    • 2
  • Andrei Păun
    • 1
    • 3
    • 4
    • 5
  • Alfonso Rodríguez-Patón
    • 1
  • David Pérez
    • 1
  1. 1.Departamento de Inteligencia Artificial, Facultad de InformáticaUniversidad Politécnica de MadridMadridSpain
  2. 2.Institute of Computer ScienceSilesian UniversityOpavaCzech Republic
  3. 3.Department of Computer Science/IfMLouisiana Tech UniversityRustonUSA
  4. 4.Bioinformatics DepartmentNational Institute of Research and Development for Biological SciencesBucharestRomania
  5. 5.Faculty of Mathematics and Computer Science, Department of Computer ScienceUniversity of BucharestBucharestRomania

Personalised recommendations