Transition and Halting Modes in (Tissue) P Systems

  • Rudolf Freund
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5957)


A variety of different transition modes for (tissue) P systems as well as several halting modes currently are used in the area of membrane computing. In this paper, the definitions of the most important transition modes and halting modes are explained based on networks of cells, a general model for tissue P systems. Moreover, some results for specific variants of (tissue) P systems working on multisets of objects are recalled.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alhazov, A., Freund, R., Oswald, M., Slavkovik, M.: Extended spiking neural P systems generating strings and vectors of non-negative integers. In: Hoogeboom, H.J., Paun, Gh., Rozenberg, G. (eds.) Pre-proceedings of Membrane Computing, International Workshop, WMC7, Leiden, The Netherlands, pp. 88–101 (2006)Google Scholar
  2. 2.
    Alhazov, A., Freund, R., Oswald, M., Verlan, S.: Partial versus total halting in P systems. In: Gutiérrez-Naranjo, M.A., Păun, Gh., Pérez-Jiménez, M.J. (eds.) Cellular Computing (Complexity Aspects), ESF PESC Exploratory Workshop, Fénix Editorial, Sevilla, pp. 1–20 (2005)Google Scholar
  3. 3.
    Alhazov, A., Freund, R., Oswald, M., Verlan, S.: Partial halting in P systems using membrane rules with permitting contexts. In: Durand-Lose, J., Margenstern, M. (eds.) MCU 2007. LNCS, vol. 4664, pp. 110–121. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Beyreder, M., Freund, R.: (Tissue) P systems using noncooperative rules without halting conditions. In: Frisco, P., et al. (eds.) Pre-Proc. Ninth Workshop on Membrane Computing (WMC9), Edinburgh, pp. 85–94 (2008)Google Scholar
  5. 5.
    Bernardini, F., Gheorghe, M., Margenstern, M., Verlan, S.: Networks of Cells and Petri Nets. In: Gutiérrez-Naranjo, M.A., et al. (eds.) Proc. Fifth Brainstorming Week on Membrane Computing, Sevilla, pp. 33–62 (2007)Google Scholar
  6. 6.
    Ciobanu, G., Pan, L., Păun, Gh., Pérez-Jim énez, M.J.: P systems with minimal parallelism. Theoretical Computer Science 378(1), 117–130 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Csuhaj-Varjú, E.: Networks of language processors. Current Trends in Theoretical Computer Science, 771–790 (2001)Google Scholar
  8. 8.
    Dassow, J., Păun, Gh.: On the power of membrane computing. Journal of Universal Computer Science 5(2), 33–49 (1999)MathSciNetGoogle Scholar
  9. 9.
    Freund, R., Kari, L., Oswald, M., Sosík, P.: Computationally universal P systems without priorities: two catalysts are sufficient. Theoretical Computer Science 330, 251–266 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Freund, R., Oswald, M.: Partial halting in P systems. Intern. J. Foundations of Computer Sci. 18, 1215–1225 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Freund, R., Păun, Gh., Pérez-Jiménez, M.J.: Tissue-like P systems with channel states. Theoretical Computer Science 330, 101–116 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Freund, R., Verlan, S.: A formal framework for P systems. In: Eleftherakis, G., Kefalas, P., Paun, Gh. (eds.) Pre-proceedings of Membrane Computing, International Workshop – WMC8, Thessaloniki, Greece, pp. 317–330 (2007)Google Scholar
  13. 13.
    Freund, R., Verlan, S.: (Tissue) P systems working in the k-restricted minimally parallel derivation mode. In: Csuhaj-Varjú, E., et al. (eds.) Proceedings of the International Workshop on Computing with Biomolecules, Österreichische Computer Gesellschaft, pp. 43–52 (2008)Google Scholar
  14. 14.
    Ionescu, M., Păun, Gh., Yokomori, T.: Spiking neural P systems. Fundamenta Informaticae 71(2-3), 279–308 (2006)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Păun, A., Păun, Gh.: The power of communication: P systems with symport/ antiport. New Generation Computing 20(3), 295–306 (2002)zbMATHCrossRefGoogle Scholar
  16. 16.
    Păun, Gh.: Computing with membranes. J. of Computer and System Sciences 61(1), 108–143 (2000); TUCS Research Report 208 (1998), zbMATHCrossRefGoogle Scholar
  17. 17.
    Păun, Gh.: Membrane Computing. An Introduction. Springer, Berlin (2002)zbMATHGoogle Scholar
  18. 18.
    Rogozhin, Y., Alhazov, A., Freund, R.: Computational power of symport/antiport: history, advances, and open problems. In: Freund, R., Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 1–30. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, 3 vols. Springer, Berlin (1997)zbMATHGoogle Scholar
  20. 20.
    Păun, Gh., Sakakibara, Y., Yokomori, T.: P systems on graphs of restricted forms. Publicationes Matimaticae 60, 635–660 (2002)zbMATHGoogle Scholar
  21. 21.
    Păun, Gh., Yokomori, T.: Membrane computing based on splicing. In: Winfree, E., Gifford, D.K. (eds.) DNA Based Computers V. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 54, pp. 217–232. American Mathematical Society, Providence (1999)Google Scholar
  22. 22.
    The P Systems,

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Rudolf Freund
    • 1
  1. 1.Faculty of InformaticsVienna University of TechnologyViennaAustria

Personalised recommendations