A Note on Small Universal Spiking Neural P Systems

  • Linqiang Pan
  • Xiangxiang Zeng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5957)


In the “standard” way of simulating register machines by spiking neural P systems (in short, SN P systems), one neuron is associated with each instruction of the register machine that we want to simulate. In this note, a new way is introduced for simulating register machines by SN P systems, where only one neuron is used for all instructions of a register machine; in this way, we can use less neurons to construct universal SN P systems. Specifically, a universal system with extended rules (without delay) having 10 neurons is constructed.


Turing Machine Regular Expression Output Neuron Standard Rule Register Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alhazov, A., Freund, R., Oswald, M., Slavkovik, M.: Extended spiking neural P systems. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 123–134. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P systems. Fundamenta Informaticae 71(2-3), 279–308 (2006)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Korec, I.: Small universal register machines. Theoretical Computer Science 168, 267–301 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Minsky, M.: Computation – Finite and Infinite Machines. Prentice Hall, New Jersey (1967)zbMATHGoogle Scholar
  5. 5.
    Păun, A., Păun, G.: Small universal spiking neural P systems. BioSystems 90(1), 48–60 (2007)CrossRefGoogle Scholar
  6. 6.
    Păun, G.: Membrane Computing – An Introduction. Springer, Berlin (2002)zbMATHGoogle Scholar
  7. 7.
    Păun, G., Rozenberg, G., Salomaa, A. (eds.): Handbook of Membrane Computing. Oxford University Press, Oxford (2010)zbMATHGoogle Scholar
  8. 8.
    Rogozhin, Y.: Small universal Turing machines. Theoretical Computer Science 168, 215–240 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, 3 vols. Springer, Berlin (1997)zbMATHGoogle Scholar
  10. 10.
    Zhang, X., Zeng, X., Pan, L.: Smaller universal spiking neural P systems. Fundamental Informaticae 87(1), 117–136 (2008)zbMATHMathSciNetGoogle Scholar
  11. 11.
    The P System Web Page,

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Linqiang Pan
    • 1
  • Xiangxiang Zeng
    • 1
  1. 1.Key Laboratory of Image Processing and Intelligent Control, Department of Control Science and EngineeringHuazhong University of Science and TechnologyHubeiPeople’s Republic of China

Personalised recommendations