Advertisement

Discovering the Membrane Topology of Hyperdag P Systems

  • Radu Nicolescu
  • Michael J. Dinneen
  • Yun-Bum Kim
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5957)

Abstract

In an earlier paper, we presented an extension to the families of P systems, called hyperdag P systems (hP systems), by proposing a new underlying topological structure based on the hierarchical dag structure (instead of trees or digraphs). In this paper, we develop building-block membrane algorithms for discovery of the global topological structure from the local cell point of view. In doing so, we propose more convenient operational modes and transfer modes, that depend only on each of the individual cell rules.

Finally, by extending our initial work on the visualization of hP system membranes with interconnections based on dag structures without transitive arcs, we propose several ways to represent structural relationships, that may include transitive arcs, by simple-closed planar regions, which are folded (and possibly twisted) in three dimensional space.

Keywords

Planar Representation Membrane Topology Simple Closed Curf Membrane Computing Simple Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alhazov, A., Margenstern, M., Verlan, S.: Fast synchronization in P systems. In: Corne, D.W., Frisco, P., Paun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2008. LNCS, vol. 5391, pp. 118–128. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Bernardini, F., Gheorghe, M., Margenstern, M., Verlan, S.: How to synchronize the activity of all components of a P system? Int. J. Found. Comput. Sci. 19(5), 1183–1198 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Ciobanu, G., Desai, R., Kumar, A.: Membrane systems and distributed computing. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 187–202. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Ciobanu, G.: Distributed algorithms over communicating membrane systems. Biosystems 70(2), 123–133 (2003)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Dinneen, M.J., Kim, Y.-B., Nicolescu, R.: New solutions to the firing squad synchronization problem for neural and hyperdag P systems. EPTCS 15, 1–16 (2009)Google Scholar
  6. 6.
    Flapan, E.: When Topology Meets Chemistry: A Topological Look at Molecular Chirality. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  7. 7.
    Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Francisco (1996)zbMATHGoogle Scholar
  8. 8.
    Nicolescu, R., Dinneen, M.J., Kim, Y.-B.: Structured modelling with hyperdag P systems: Part A. In: Martínez del Amor, M.A., et al. (eds.) Seventh Brainstorming Week on Membrane Computing, vol. 2, pp. 85–107. Universidad de Sevilla (2009)Google Scholar
  9. 9.
    Păun, Gh.: Membrane Computing-An Introduction. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  10. 10.
    Păun, Gh.: Introduction to membrane computing. In: Ciobanu, G., Păun, Gh., Pérez-Jiménez, M.J. (eds.) Applications of Membrane Computing, pp. 1–42. Springer, Heidelberg (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Radu Nicolescu
    • 1
  • Michael J. Dinneen
    • 1
  • Yun-Bum Kim
    • 1
  1. 1.Department of Computer ScienceUniversity of AucklandAucklandNew Zealand

Personalised recommendations