Advertisement

An Improved Membrane Algorithm for Solving Time-Frequency Atom Decomposition

  • Chunxiu Liu
  • Gexiang Zhang
  • Hongwen Liu
  • Marian Gheorghe
  • Florentin Ipate
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5957)

Abstract

To decrease the computational complexity and improve the search capability of quantum-inspired evolutionary algorithm based on P systems (QEPS), a real-observation QEPS (RQEPS) was proposed. RQEPS is a hybrid algorithm combining the framework and evolution rules of P systems with active membranes and real-observation quantum-inspired evolutionary algorithm (QEA). The RQEPS involves a dynamic structure including membrane fusion and division. The membrane fusion is helpful to enhance the information communication among individuals and the membrane division is beneficial to reduce the computational complexity. An NP-complete problem, the time-frequency atom decomposition of noised radar emitter signals, is employed to test the effectiveness and practical capabilities of the RQEPS. The experimental results show that RQEPS is superior to QEPS, the greedy algorithm and binary-observation QEA in terms of search capability and computational complexity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Davis, G., Mallat, S., Avellaneda, M.: Adaptive greedy approximation. Journal of Constructive Approximation 13(1), 57–98 (1997)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Ferreira da Silva, A.R.: Evolutionary-based methods for adaptive signal representation. Signal Processing 81, 927–944 (2001)CrossRefGoogle Scholar
  3. 3.
    Figueras i Ventura, R.M., Vandergheynst, P.: Matching pursuit through genetic algorithms. LTS-EPFL Tech. Rep. (2001)Google Scholar
  4. 4.
    Garcia, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC 2005 Special Session on Real Parameter Optimization. Journal of Heuristics (2005), doi:10.1007/s10732-008-9080Google Scholar
  5. 5.
    Gribonval, R., Bacry, E.: Harmonic decomposition of audio signals with matching pursuit. IEEE Transactions on Signal Processing 51, 101–111 (2003)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Han, K.H., Kim, J.H.: Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Transactions on Evolutionary Computation 6, 580–593 (2002)CrossRefGoogle Scholar
  7. 7.
    Huang, L., He, X.X., Wang, N., Xie, Y.: P Systems based multi-objective optimization algorithm. Progress in Natural Science 17, 458–465 (2007)zbMATHCrossRefGoogle Scholar
  8. 8.
    Huang, L., Wang, N.: An optimization algorithm inspired by membrane computing. In: Jiao, L., Wang, L., Gao, X.-b., Liu, J., Wu, F. (eds.) ICNC 2006. LNCS, vol. 4222, pp. 49–52. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Huang, L., Wang, N., Zhao, J.H.: Multiobjective optimization for controllers. Acta Automatica Sinica 34, 472–477 (2008)CrossRefGoogle Scholar
  10. 10.
    Leporati, A., Pagani, D.: A membrane algorithm for the min storage problem. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 443–462. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Liu, C.X., Zhang, G.X., Zhu, Y.H., Fang, C., Liu, H.W.: A quantum-inspired evolutionary algorithm based on P systems for radar emitter signals. In: Proc. Fourth International Conference on Bio-Inspired Computing: Theories and Applications, pp. 24–28 (2009)Google Scholar
  12. 12.
    Mallat, S.G., Zhang, Z.F.: Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing 41, 3397–3415 (1993)zbMATHCrossRefGoogle Scholar
  13. 13.
    Nishida, T.Y.: An approximate algorithm for NP-complete optimization problems exploiting P systems. In: Proc. Brainstorming Workshop on Uncertainty in Membrane Computing, pp. 185–192 (2004)Google Scholar
  14. 14.
    Nishida, T.Y.: Membrane algorithms. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 55–66. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Păun, Gh.: Computing with membranes. Journal of Computer and System Sciences 61, 108–143 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Păun, Gh., Rozenberg, G.: A guide to membrane computing. Theoretical Computer Science 287, 73–100 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Qian, S., Chen, D.: Signal representation using adaptive normalized Gaussian functions. Signal Processing 36, 1–11 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Stefanoiu, D., Ionescu, F.L.: A genetic matching pursuit algorithm. In: Proc. 7th International Symposium on Signal Processing and Its Applications, pp. 577–580 (2003)Google Scholar
  19. 19.
    Vesin, J.: Efficient implementation of matching pursuit using a genetic algorithm in the continuous space. In: Proc. 10th European Signal Processing Conference, pp. 2–5 (2000)Google Scholar
  20. 20.
    Zaharie, D., Ciobanu, G.: Distributed evolutionary algorithms inspired by membranes in solving continuous optimization problems. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 536–553. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Zhang, G.X.: Time-frequency atom decomposition with quantum-inspired evolutionary algorithm. In: Circuits, Systems and Signal Processing (accepted, 2009)Google Scholar
  22. 22.
    Zhang, G.X., Gheorghe, M., Wu, C.Z.: A quantum-inspired evolutionary algorithm based on P systems for a class of combinatorial optimization. Fundamenta Informaticae 87, 93–116 (2008)zbMATHMathSciNetGoogle Scholar
  23. 23.
    Zhang, G.X., Li, N., Jin, W.D.: Novel quantum genetic algorithm and its applications. Frontiers of Electrical and Electronic Engineering in China 1(1), 31–36 (2006)CrossRefGoogle Scholar
  24. 24.
    Zhang, G.X., Rong, H.N.: Real-observation quantum-inspired evolutionary algorithm for a class of numerical optimization problems. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007. LNCS, vol. 4490, pp. 989–996. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Zhang, G.X., Rong, H.N., Jin, W.D., Hu, L.Z.: Radar emitter signal recognition based on resemblance coefficient features. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 665–670. Springer, Heidelberg (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Chunxiu Liu
    • 1
  • Gexiang Zhang
    • 1
  • Hongwen Liu
    • 1
  • Marian Gheorghe
    • 2
    • 3
  • Florentin Ipate
    • 3
  1. 1.School of Electrical EngineeringSouthwest Jiaotong UniversityChengduP.R. China
  2. 2.Department of Computer ScienceThe University of SheffieldSheffieldUK
  3. 3.Department of Computer Science and MathematicsUniversity of PiteştiRomania

Personalised recommendations