Characterizing Tractability by Tissue-Like P Systems

  • Rosa Gutiérrez–Escudero
  • Mario J. Pérez–Jiménez
  • Miquel Rius–Font
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5957)


In the framework of recognizer cell–like membrane systems it is well known that the construction of exponential number of objects in polynomial time is not enough to efficiently solve NP–complete problems. Nonetheless, it may be sufficient to create an exponential number of membranes in polynomial time.

In this paper, we study the computational efficiency of recognizer tissue P systems with communication (symport/antiport) rules and division rules. Some results have been already obtained in this direction: (a) using communication rules and making no use of division rules, only tractable problems can be efficiently solved; (b) using communication rules with length three and division rules, NP–complete problems can be efficiently solved. In this paper, we show that the length of communication rules plays a relevant role from the efficiency point of view for this kind of P systems.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Díaz–Pernil, D.: Sistemas celulares de tejidos: Formalización y eficiencia computacional. Ph D. Thesis, University of Sevilla (2008)Google Scholar
  2. 2.
    Díaz–Pernil, D., Pérez–Jiménez, M.J., Romero–Jiménez, A.: Efficient simulation of tissue-like P systems by transition cell-like P systems. Natural Computing,
  3. 3.
    Díaz–Pernil, D., Pérez–Jiménez, M.J., Riscos–Núñez, A., Romero–Jiménez, A.: Computational efficiency of cellular division in tissue-like membrane systems. Romanian Journal of Information Science and Technology 11(3), 229–241 (2008)Google Scholar
  4. 4.
    Frisco, P., Hoogeboom, H.J.: Simulating counter automata by P systems with symport/antiport. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 288–301. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Gutiérrez–Naranjo, M.A., Pérez–Jiménez, M.J., Riscos–Núñez, A., Romero–Campero, F.J.: On the power of dissolution in P systems with active membranes. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 224–240. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Gutiérrez–Naranjo, M.A., Pérez–Jiménez, M.J., Riscos–Núñez, A., Romero–Campero, F.J., Romero–Jiménez, A.: Characterizing tractability by cell-like membrane systems. In: Subramanian, K.G., Rangarajan, K., Mukund, M. (eds.) Formal models, languages and applications, ch. 9, pp. 137–154. World Scientific, Singapore (2006)Google Scholar
  7. 7.
    Martín–Vide, C., Pazos, J., Păun, Gh., Rodríguez–Patón, A.: Tissue P systems. Theoretical Computer Science 296, 295–326 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Păun, A., Păun, Gh.: The power of communication: P systems with symport/antiport. New Generation Computing 20(3), 295–305 (2002)zbMATHCrossRefGoogle Scholar
  9. 9.
    Păun, Gh.: Computing with membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Păun, Gh.: Membrane Computing. An Introduction. Springer, Berlin (2002)zbMATHGoogle Scholar
  11. 11.
    Păun, Gh., Pérez–Jiménez, M.J.: Recent computing models inspired from biology: DNA and membrane computing. Theoria 18(46), 72–84 (2003)Google Scholar
  12. 12.
    Păun, Gh., Pérez–Jiménez, M.J., Riscos–Núñez, A.: Tissue P Systems with cell division. International Journal of Computers, Communications & Control III(3), 295–303 (2008); A preliminary version in Păun, Gh., et al. (eds.) Second Brainstorming Week on Membrane Computing, Sevilla, Report RGNC 01/2004, pp. 380–386 (2004)Google Scholar
  13. 13.
    Pérez–Jiménez, M.J., Romero–Jiménez, A., Sancho–Caparrini, F.: Complexity classes in cellular computing with membranes. Natural Computing 2(3), 265–285 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Pérez–Jiménez, M.J., Romero–Jiménez, A., Sancho–Caparrini, F.: A polynomial complexity class in P systems using membrane division. Journal of Automata, Languages and Combinatorics 11(4), 423–434 (2003); A preliminary version in Csuhaj-Varjú, E., et al. (eds.) Proc. Fifth Intern. Workshop on Descriptional Complexity of Formal Systems, DCFS 2003, Budapest, Hungary, July 12-14, 284–294 (2003)Google Scholar
  15. 15.
    P systems web page,

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Rosa Gutiérrez–Escudero
    • 1
  • Mario J. Pérez–Jiménez
    • 1
  • Miquel Rius–Font
    • 2
  1. 1.Research Group on Natural Computing, Department of Computer Science and Artificial IntelligenceUniversity of SevillaSevillaSpain
  2. 2.Department of Applied Mathematics IVUniversitat Politécnica de CatalunyaCastelldefelsSpain

Personalised recommendations