(Tissue) P Systems with Hybrid Transition Modes

  • Rudolf Freund
  • Marian Kogler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5957)


In addition to the maximally parallel transition mode used from the beginning in the area of membrane computing, many other transition modes for (tissue) P systems have been investigated since then. In this paper we consider (tissue) P systems with hybrid transition modes where each set of a covering of the whole set of rules may work in a different transition mode in a first level and all partitions of rules work together at a (second) level of the whole system on the current configuration in a maximally parallel way. With all partitions of noncooperative rules working in the maximally parallel mode, we obtain a characterization of Parikh sets of ET0L-languages, whereas with hybrid systems with the partitions either working in the maximally parallel and in the = 1-mode or with all partitions working in the = 1-mode we can simulate catalytic or purely catalytic P systems, respectively, thus obtaining computational completeness.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bernardini, F., Gheorghe, M., Margenstern, M., Verlan, S.: Networks of cells and Petri nets. In: Gutiérrez-Naranjo, M.A., et al. (eds.) Proc. Fifth Brainstorming Week on Membrane Computing, Sevilla, pp. 33–62 (2007)Google Scholar
  2. 2.
    Beyreder, M., Freund, R.: Membrane systems using noncooperative rules with unconditional halting. In: Corne, D.W., Frisco, P., Paun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2008. LNCS, vol. 5391, pp. 129–136. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Ciobanu, G., Pan, L., Păun, Gh., Pérez-Jiménez, M.J.: P systems with minimal parallelism. Theoretical Computer Science 378(1), 117–130 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Csuhaj-Varjú, E.: Networks of language processors. Current Trends in Theoretical Computer Science, 771–790 (2001)Google Scholar
  5. 5.
    Csuhaj-Varjú, E., Dessow, J., Kelemen, J., Păun, Gh.: Grammar Systems: A Grammatical Approach to Distribution and Cooperation. Gordon and Breach Science Publishers, Amsterdam (1994)zbMATHGoogle Scholar
  6. 6.
    Dassow, J., Păun, Gh.: On the power of membrane computing. Journal of Universal Computer Science 5(2), 33–49 (1999)MathSciNetGoogle Scholar
  7. 7.
    Freund, R., Kari, L., Oswald, M., Sosík, P.: Computationally universal P systems without priorities: two catalysts are sufficient. Theoretical Computer Science 330, 251–266 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Freund, R., Păun, Gh., Pérez-Jiménez, M.J.: Tissue-like P systems with channel states. Theoretical Computer Science 330, 101–116 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Freund, R., Verlan, S.: A formal framework for P systems. In: Eleftherakis, G., Kefalas, P., Păun, Gh. (eds.) Pre-proceedings of Membrane Computing, International Workshop – WMC8, Thessaloniki, Greece, pp. 317–330 (2007)Google Scholar
  10. 10.
    Freund, R., Verlan, S.: (Tissue) P systems working in the k-restricted minimally parallel derivation mode. In: Csuhaj-Varjú, E., et al. (eds.) Proceedings of the International Workshop on Computing with Biomolecules, Österreichische Computer Gesellschaft, pp. 43–52 (2008)Google Scholar
  11. 11.
    Minsky, M.L.: Computation – Finite and Infinite Machines. Prentice Hall, Englewood Cliffs (1967)zbMATHGoogle Scholar
  12. 12.
    Păun, Gh.: Computing with membranes. J. of Computer and System Sciences 61(1), 108–143 (2000); TUCS Research Report 208 (1998), zbMATHCrossRefGoogle Scholar
  13. 13.
    Păun, Gh.: Membrane Computing. An Introduction. Springer, Berlin (2002)zbMATHGoogle Scholar
  14. 14.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages,  3 vols. Springer, Berlin (1997)zbMATHGoogle Scholar
  15. 15.
    Păun, Gh., Sakakibara, Y., Yokomori, T.: P systems on graphs of restricted forms. Publicationes Matimaticae 60, 635–660 (2002)zbMATHGoogle Scholar
  16. 16.
    The P Systems web page,

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Rudolf Freund
    • 1
  • Marian Kogler
    • 1
  1. 1.Faculty of InformaticsVienna University of TechnologyViennaAustria

Personalised recommendations