Advertisement

Regulation and Covering Problems in MP Systems

  • Giuditta Franco
  • Vincenzo Manca
  • Roberto Pagliarini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5957)

Abstract

The study of efficient methods to deduce fluxes of biological reactions, by starting from experimental data, is necessary to understand metabolic dynamics, and is a central issue in systems biology. In this paper we report some initial results, together with related open problems, regarding the efficient computation of regulation fluxes in metabolic P systems. By means of Log-gain theory the system dynamics can be linearized, in such a way to be described by a recurrence equations system, of which we point out a few algebraic properties, involving covering problems.

Keywords

Membrane System Covering Problem Rule Application Stoichiometric Matrix Mechanosensitive Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ardelean, I., Besozzi, D., Garzon, M.H., Mauri, G., Roy, S.: P System Models for Mechanosensitive Channels. In: [4], ch. 2, pp. 43–80Google Scholar
  2. 2.
    Besozzi, D., Cazzaniga, P., Mauri, G., Pescini, D.: Modelling metapopulations with stochastic membrane systems. Biosystems 91, 499–514 (2008)CrossRefGoogle Scholar
  3. 3.
    Bianco, L., Fontana, F., Franco, G., Manca, V.: P systems for biological dynamics. In: [4], ch. 3, pp. 81–126Google Scholar
  4. 4.
    Ciobanu, G., Pérez-Jiménez, M.J., Păun, G. (eds.): Applications of Membrane Computing. Springer, Berlin (2006)Google Scholar
  5. 5.
    Franco, G., Jonoska, N., Osborn, B., Plaas, A.: Knee joint injury and repair modeled by membrane systems. BioSystems 91, 473–488 (2008)CrossRefGoogle Scholar
  6. 6.
    Franco, G., Manca, V.: A membrane system for the leukocyte selective recruitment. In: Martín-Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2003. LNCS, vol. 2933, pp. 181–190. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A.: On the degree of parallelism in membrane systems. Theoretical Computer Science 372(2-3), 183–195 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Manca, V.: Fundamentals of metabolic P systems. In: Păun, G., et al. (eds.) Handbook of Membrane Computing, ch. 16. Oxford University Press, Oxford (2009)Google Scholar
  9. 9.
    Manca, V.: Log-gain principles for metabolic P systems. In: Condon, A., et al. (eds.) Algorithmic Bioprocesses, ch. 28. Springer, Berlin (2009)Google Scholar
  10. 10.
    Manca, V.: The metabolic algorithm for P systems: Principles and applications. Theoretical Computer Science 404, 142–157 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Manca, V., Bianco, L., Fontana, F.: Evolution and oscillation in P systems: Applications to biological phenomena. In: Mauri, G., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 63–84. Springer, Heidelberg (2005)Google Scholar
  12. 12.
    Manca, V., Pagliarini, R., Zorzan, S.: A photosynthetic process modelled by a metabolic P system. Natural Computing (to appear, 2009), doi:10.1007/s11047-008-9104-xGoogle Scholar
  13. 13.
    Pagliarini, R., Franco, G., Manca, V.: An algorithm for initial fluxes of metabolic P systems. Int. J. of Computers, Communications & Control IV(3), 263–272 (2009)Google Scholar
  14. 14.
    Păun, Gh.: Computing with membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000); Turku Center for Computer Science-TUCS Report 208, November 1998, www.tucs.fi zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Păun, Gh.: Membrane Computing: An Introduction. Springer, Berlin (2002)zbMATHGoogle Scholar
  16. 16.
    Păun, Gh., Păun, R.A.: Membrane computing as a framework for modeling economic processes. In: Proc. Seventh International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, Timişoara, pp. 11–18 (2005)Google Scholar
  17. 17.
    Romero-Campero, F.J., Cao, H., Camara, M., Krasnogor, N.: Structure and parameter estimation for cell systems biology models. In: Proc. of the Genetic and Evolutionary Computation Conference, Atlanta, USA, July 12-16, pp. 331–338 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Giuditta Franco
    • 1
  • Vincenzo Manca
    • 1
  • Roberto Pagliarini
    • 1
  1. 1.Computer Science DepartmentVerona UniversityVeronaItaly

Personalised recommendations