Advertisement

A Novel Variant of P Systems for the Modelling and Simulation of Biochemical Systems

  • Paolo Cazzaniga
  • Giancarlo Mauri
  • Luciano Milanesi
  • Ettore Mosca
  • Dario Pescini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5957)

Abstract

In the last decade, different computing paradigms and modelling frameworks for the description and simulation of biochemical systems have been proposed. Here, we consider membrane systems, in particular, tissue P systems and τ-DPP, for the development of a novel variant of membrane systems with sizes associated to the volumes involved in the structure and to the molecular species occurring inside the system. Moreover, this variant allows the communication of objects among non adjacent membranes arranged in a hybrid structure, that is, organised in a tissue-like fashion where nodes can have a complex internal structure. The features presented in the new variant of P systems can be used to describe, among others, reaction-diffusion systems, where molecules are involved both in chemical reactions and diffusive processes, and their movements depend on the free space of the volumes; or systems where exist privileged pathways between membranes, which are inspired by the role of microtubule in protein transport within the intracellular space.

Keywords

Membrane Structure Membrane System Current Iteration Biochemical System Stochastic Simulation Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alhazov, A., Freund, R., Oswald, M.: Cell/symbol complexity of tissue p systems with symport/antiport rules. Int. J. Found. Comput. Sci. 17(1), 3–25 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bernardini, F., Gheorghe, M.: Cell communication in tissue p systems: universality results. Soft Comput. 9(9), 640–649 (2005)zbMATHCrossRefGoogle Scholar
  3. 3.
    Besozzi, D., Cazzaniga, P., Pescini, D., Mauri, G.: Seasonal variance in p system models for metapopulations. Progress in Natural Science 17, 392–400 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Besozzi, D., Cazzaniga, P., Pescini, D., Mauri, G.: Modelling metapopulations with stochastic membrane systems. Biosystems 91(3), 499–514 (2008)CrossRefGoogle Scholar
  5. 5.
    Cao, Y., Gillespie, D.T., Petzold, L.R.: Efficient step size selection for the tau-leaping simulation method. J. Chem. Phys. 124(4), 44109 (2006)CrossRefGoogle Scholar
  6. 6.
    Cavaliere, M.: Evolution-communication p systems. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 134–145. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Cazzaniga, P., Pescini, D., Besozzi, D., Mauri, G.: Tau leaping stochastic simulation method in p systems. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 298–313. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    De Wit, A.: Spatial patterns and spatiotemporal dynamics in chemical systems. Adv. Chem. Phys. 109, 435–513 (1999)CrossRefGoogle Scholar
  9. 9.
    Freund, R., Păun, G., Pérez-Jiménez, M.J.: Tissue p systems with channel states. Theoretical Computer Science 330(1), 101–116 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  11. 11.
    Gillespie, D.T.: Approximate accelerated stochastic simulation of chemically reacting systems. The Journal of Chemical Physics 115, 1716–1733 (2001)CrossRefGoogle Scholar
  12. 12.
    Ionescu, M., Martín-Vide, C., Păun, A., Păun, G.: Unexpected universality results for three classes of P systems with symport/antiport. Natural Computing: an international journal 2(4), 337–348 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Marion, O.: Independent agents in a globalized world modelled by tissue P systems. Artificial Life and Robotics 11(2), 171–174 (2007)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Martín-Vide, C., Păun, G., Pazos, J., Rodríguez-Patón, A.: Tissue p systems. Theoretical Computer Science 296(2), 295–326 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Martín-Vide, C., Pazos, J., Păun, G., Rodríguez-Patón, A.: A new class of symbolic abstract neural nets: Tissue p systems. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp. 290–299. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Nicolescu, R., Dinneen, M., Kim, Y.: Structured modeling with hyperdag P systems. In: Proc. 7th Brainstorming week on Membrane Computing, vol. II, pp. 85–108 (2009)Google Scholar
  17. 17.
    Păun, G.: Computing with membranes. Journal of Computer and System Sciences 61, 108–143 (1998)CrossRefGoogle Scholar
  18. 18.
    Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)zbMATHGoogle Scholar
  19. 19.
    Păun, G., Păun, R.A.: Membrane computing as a framework for modeling economic processes. In: International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, pp. 11–18 (2005)Google Scholar
  20. 20.
    Păun, G., Sakakibara, Y., Yokomori, T.: P systems on graphs of restricted forms. Publicationes Mathematicae Debrecen 60, 635–660 (2002)zbMATHMathSciNetGoogle Scholar
  21. 21.
    Pescini, D., Besozzi, D., Mauri, G.: Investigating local evolutions in dynamical probabilistic p systems. In: Proc. Seventh International Symposium on Symbolic and Numeric Algorithms for Scientific Computing SYNASC 2005, p. 440 (2005)Google Scholar
  22. 22.
    Pescini, D., Besozzi, D., Mauri, G., Zandron, C.: Dynamical probabilistic p systems. International Journal of Foundations of Computer Science 17, 183–204 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Pescini, D., Besozzi, D., Zandron, C., Mauri, G.: Analysis and simulation of dynamics in probabilistic p systems. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005. LNCS, vol. 3892, pp. 236–247. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Pouton, C.W., Wagstaff, K.M., Roth, D.M., Moseley, G.W., Jans, D.A.: Targeted delivery to the nucleus. Adv. Drug Deliv. Rev. 59(8), 698–717 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Paolo Cazzaniga
    • 1
  • Giancarlo Mauri
    • 1
  • Luciano Milanesi
    • 2
  • Ettore Mosca
    • 2
  • Dario Pescini
    • 1
  1. 1.Dipartimento di Informatica, Sistemistica e ComunicazioneUniversità degli Studi di Milano-BicoccaMilanoItaly
  2. 2.Consiglio Nazionale RicercheIstituto Tecnologie BiomedicheSegrateItaly

Personalised recommendations