Advertisement

Typed Membrane Systems

  • Bogdan Aman
  • Gabriel Ciobanu
Conference paper
  • 378 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5957)

Abstract

We introduce and study typing rules and a type inference algorithm for membrane systems with symport/antiport evolution rules. The main results are given by a subject reduction theorem and the completeness of type inference. We exemplify how the type system is working by presenting a typed description of the sodium-potassium pump.

Keywords

Type System Membrane System Type Theory Evolution Rule Typing Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell, 5th edn. Garland Science, Taylor & Francis (2008)Google Scholar
  2. 2.
    Aman, B., Dezani-Ciancaglini, M., Troina, A.: Type disciplines for analysing biologically relevant properties. Electronic Notes in Theoretical Computer Science 227, 97–111 (2009)CrossRefGoogle Scholar
  3. 3.
    Besozzi, D., Ciobanu, G.: A P system description of the sodium-potassium pump. In: Mauri, G., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 210–223. Springer, Heidelberg (2005)Google Scholar
  4. 4.
    Ciobanu, G., Ciubotariu, V., Tanasa, B.: A Pi-calculus model of the Na-K pump. Genome Informatics 13, 469–472 (2002)Google Scholar
  5. 5.
    Ciobanu, G., Păun, Gh., Pérez-Jiménez, M.J. (eds.): Applications of Membrane Computing. Springer, Heidelberg (2006)Google Scholar
  6. 6.
    Fages, F., Soliman, S.: Abstract interpretation and types for systems biology. Theoretical Computer Science 403, 52–70 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Păun, Gh.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  8. 8.
    Pierce, B.: Types and Programming Languages. MIT Press, Cambridge (2002)Google Scholar
  9. 9.
    Russell, B.: The Principles of Mathematics, vol. I. Cambridge University Press, Cambridge (1903)zbMATHGoogle Scholar
  10. 10.
    Wells, J.: The essence of principal typings. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 913–925. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Bogdan Aman
    • 1
  • Gabriel Ciobanu
    • 1
  1. 1.Romanian AcademyInstitute of Computer Science, and, A.I.Cuza University of IaşiRomania

Personalised recommendations