Advertisement

A Computational Complexity Theory in Membrane Computing

  • Mario J. Pérez–Jiménez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5957)

Abstract

In this paper, a computational complexity theory within the framework of Membrane Computing is introduced. Polynomial complexity classes associated with different models of cell-like and tissue-like membrane systems are defined and the most relevant results obtained so far are presented. Many attractive characterizations of PNP conjecture within the framework of a bio-inspired and non-conventional computing model are deduced.

Keywords

Decision Problem Turing Machine Dependency Graph Active Membrane Complete Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alhazov, A., Pérez–Jiménez, M.J.: Uniform solution of QSAT using polarizationless active membranes. In: Durand-Lose, J., Margenstern, M. (eds.) MCU 2007. LNCS, vol. 4664, pp. 122–133. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Alhazov, A., Freund, R., Păun, Gh.: P systems with active membranes and two polarizations. In: Păun, Gh., et al. (eds.) Proc. Second Brainstorming Week on Membrane Computing, Report RGNC 01/04, Sevilla, pp. 20–35 (2004)Google Scholar
  3. 3.
    Alhazov, A., Pan, L., Păun, G.: Trading polarizations for labels in P systems with active membranes. Acta Informaticae 41(2-3), 111–144 (2004)CrossRefzbMATHGoogle Scholar
  4. 4.
    Alhazov, A., Martín–Vide, C., Pan, L.: Solving graph problems by P systems with restricted elementary active membranes. In: Jonoska, N., Păun, Gh., Rozenberg, G. (eds.) Aspects of Molecular Computing. LNCS, vol. 2950, pp. 1–22. Springer, Heidelberg (2003)Google Scholar
  5. 5.
    Alhazov, A., Martín–Vide, C., Pan, L.: Solving a PSPACE–complete problem by recognizing P systems with restricted active membranes. Fundamenta Informaticae 58, 67–77 (2003)MathSciNetGoogle Scholar
  6. 6.
    Díaz–Pernil, D., Gutiérrez–Naranjo, M.A., Pérez-Jiménez, M.J., Romero–Jiménez, A.: Efficient simulation of tissue–like P systems by transition cell–like P systems. Natural Computing, http://dx.doi.org/10.1007/s11047-008-9102-z
  7. 7.
    Díaz–Pernil, D., Pérez–Jiménez, M.J., Riscos–Núñez, A., Romero–Jiménez, A.: Computational efficiency of cellular division in tissue-like membrane systems. Romanian Journal of Information Science and Technology 11(3), 229–241 (2008)Google Scholar
  8. 8.
    Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory of NP-completeness. W.H. Freeman and Company, New York (1979)zbMATHGoogle Scholar
  9. 9.
    Gutiérrez-Naranjo, R., Pérez-Jiménez, M.J., Rius–Font, M.: Characterizing tractability by tissue–like P systems. In: Gutiérrez–Escudero, R., et al. (eds.) Proc. Seventh Brainstorming Week on Membrane Computing, Fénix Editora, Seville, pp. 169–180 (2009)Google Scholar
  10. 10.
    Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A.: A fast P system for finding a balanced 2-partition. Soft Computing 9(9), 673–678 (2005)CrossRefzbMATHGoogle Scholar
  11. 11.
    Gutiérrez–Naranjo, M.A., Pérez–Jiménez, M.J., Riscos–Núñez, A., Romero–Campero, F.J.: On the power of dissolution in P systems with active membranes. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 224–240. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Gutiérrez–Naranjo, M.A., Pérez–Jiménez, M.J., Riscos–Núñez, A., Romero–Campero, F.J., Romero–Jiménez, A.: Characterizing tractability by cell–like membrane systems. In: Subramanian, K.G., et al. (eds.) Formal Models, Languages and Applications, pp. 137–154. World Scientific, Singapore (2006)Google Scholar
  13. 13.
    Krishna, S.N., Rama, R.: A variant of P systems with active membranes: Solving NP–complete problems. Romanian Journal of Information Science and Technology 2(4), 357–367 (1999)Google Scholar
  14. 14.
    Leporati, A., Ferretti, C., Mauri, G., Pérez–Jiménez, M.J., Zandron, C.: Complexity aspects of polarizationless membrane systems. Natural Computing, http://dx.doi.org/10.1007/s11047-008-9100-1
  15. 15.
    Murphy, N., Woods, D.: Active membrane systems without charges and using only symetric elementary division characterise P. In: Eleftherakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2007. LNCS, vol. 4860, pp. 367–384. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Obtulowicz, A.: Deterministic P systems for solving SAT problem. Romanian Journal of Information Science and Technology 4(1-2), 551–558 (2001)MathSciNetGoogle Scholar
  17. 17.
    Pan, L., Alhazov, A., Ishdorj, T.-O.: Further remarks on P systems with active membranes, separation, merging, and release rules. In: Păun, Gh., et al. (eds.) Proc. Second Brainstorming Week on Membrane Computing, Report RGNC 01/04, Sevilla, pp. 316–324 (2004)Google Scholar
  18. 18.
    Pan, L., Ishdorj, T.-O.: P systems with active membranes and separation rules. Journal of Universal Computer Science 10(5), 630–649 (2004)MathSciNetGoogle Scholar
  19. 19.
    Pan, L., Pérez-Jiménez, M.J.: Computational complexity of tissue–like P systems with cell separation (submitted, 2009)Google Scholar
  20. 20.
    Păun, A.: On P systems with membrane division. In: Antoniou, I., et al. (eds.) Unconventional Models of Computation, pp. 187–201. Springer, London (2000)Google Scholar
  21. 21.
    Păun, Gh.: Computing with membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000); Turku Center for CS-TUCS Report No. 208 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Păun, Gh.: Membrane Computing. An Introduction. Springer, Berlin (2002)zbMATHGoogle Scholar
  23. 23.
    Păun, Gh.: P systems with active membranes: Attacking NP–complete problems. Journal of Automata, Languages and Combinatorics 6(1), 75–90 (2001)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Păun, Gh.: Computing with membranes. Attacking NP–complete problems. In: Antoniou, I., et al. (eds.) Unconventional Models of Computation, pp. 94–115. Springer, London (2000)Google Scholar
  25. 25.
    Păun, Gh.: Further twenty six open problems in membrane computing. In: Gutiérrez-Naranjo, M.A., et al. (eds.) Proc. Third Brainstorming Week on Membrane Computing, Report RGNC 01/04, Fénix Editora, Sevilla, pp. 249–262 (2005)Google Scholar
  26. 26.
    Pérez–Jiménez, M.J.: An approach to computational complexity in membrane computing. In: Mauri, G., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 85–109. Springer, Heidelberg (2005)Google Scholar
  27. 27.
    Pérez-Jiménez, M.J., Riscos-Núñez, A.: Solving the Subset-Sum problem by active membranes. New Generation Computing 23(4), 367–384 (2005)Google Scholar
  28. 28.
    Pérez-Jiménez, M.J., Riscos-Núñez, A.: A linear–time solution to the Knapsack problem using P systems with active membranes. In: Martín-Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2003. LNCS, vol. 2933, pp. 250–268. Springer, Heidelberg (2004)Google Scholar
  29. 29.
    Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: A polynomial complexity class in P systems using membrane division. Journal of Automata, Languages and Combinatorics 11(4), 423–434 (2006); A preliminary version in Csuhaj-Varjú, E., et al. (eds.) Proc. Fifth International Workshop on Descriptional Complexity of Formal Systems, DCFS 2003, Budapest, Hungary, July 12-14, pp. 284–294 (2003)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Pérez-Jiménez, M.J., Romero–Campero, F.J.: Attacking the common algorithmic problem by recognizer P systems. In: Margenstern, M. (ed.) MCU 2004. LNCS, vol. 3354, pp. 304–315. Springer, Heidelberg (2005)Google Scholar
  31. 31.
    Pérez–Jiménez, M.J., Romero–Campero, F.J.: An efficient family of P systems for packing items into bins. Journal of Universal Computer Science 10(5), 650–670 (2004)MathSciNetGoogle Scholar
  32. 32.
    Pérez–Jiménez, M.J., Romero-Campero, F.J.: Trading polarizations for bi-stable catalysts in P systems with active membranes. In: Mauri, G., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 373–388. Springer, Heidelberg (2005)Google Scholar
  33. 33.
    Pérez–Jiménez, M.J., Romero–Jiménez, A., Sancho–Caparrini, F.: Complexity classes in cellular computing with membranes. Natural Computing 2(3), 265–285 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  34. 34.
    Porreca, A.E.: Computational Complexity Classes for Membrane Systems, Master Degree Thesis, Universita’ di Milano-Bicocca, Italy (2008)Google Scholar
  35. 35.
    Porreca, A.E., Mauri, G., Zandron, C.: Complexity classes for membrane systems. Informatique théorique et applications 40(2), 141–162 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  36. 36.
    Riscos–Núñez, A.: Cellular Programming: efficient resolution of NP–complete numerical problems. PhD. Thesis, University of Sevilla, Spain (2004)Google Scholar
  37. 37.
    Sosík, P., Rodríguez–Patón, A.: Membrane computing and complexity theory: A characterization of PSPACE. Journal of Computer and System Sciences 73, 137–152 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  38. 38.
    Sosík, P.: The computational power of cell division. Natural Computing 2(3), 287–298 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  39. 39.
    Woods, D., Murphy, N., Pérez-Jiménez, M.J., Riscos-Núñez, A.: Membrane dissolution and division in P. LNCS, vol. 5715, pp. 263–277. Springer, Heidelberg (2009)Google Scholar
  40. 40.
    Zandron, C., Ferretti, C., Mauri, G.: Solving NP–complete problems using P systems with active membranes. In: Antoniou, I., Calude, C.S., Dinneen, M.J. (eds.) Unconventional Models of Computation, pp. 289–301. Springer, Heidelberg (2000)Google Scholar
  41. 41.
    Zandron, C., Leporati, A., Ferretti, C., Mauri, G., Pérez–Jiménez, M.J.: On the computational efficiency of polarizationless recognizer P systems with strong division and dissolution. Fundamenta Informaticae 87(1), 79–91 (2008)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Mario J. Pérez–Jiménez
    • 1
  1. 1.Research Group on Natural Computing, Department of Computer Science and Artificial IntelligenceUniversity of SevillaSevillaSpain

Personalised recommendations