Skip to main content

The β-Lactam Antibiotics: Current Situation and Future Prospects in Manufacture and Therapy

  • Chapter
  • First Online:
Industrial Applications

Part of the book series: The Mycota ((MYCOTA,volume 10))

Abstract

This chapter illustrates recent changes in the global scenery and market for β-lactam antibiotics during the past 10 years and gives a comprehensive overview of current developments and future trends in their manufacture and their prospects in antibiotic therapy. Every aspect of their manufacture is covered in the first part, starting from genetics, biosynthesis and strategies for improving strains and their fermentation and ending with downstream processing, including their cleavage to 6-aminopenicillanic acid and 7-aminocephalosporanic acid and the according approaches for a general process economization. The second part outlines the therapeutic implications and mechanisms of β-lactam resistance, presents current strategies to overcome them, compiles the most recently commercialized β-lactam drug developments and finally gives an outlook on novel therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aksoy DY, Unal S (2008) New antimicrobial agents for the treatment of Gram-positive bacterial infections. Clin Microbiol Infect 14:411–420

    Article  CAS  Google Scholar 

  • Amyes SGB, Miles RS (1998) Extended-spectrum beta lactamases: the role of inhibitors in therapy. J Antimicrob Chemother 42:415–417

    Article  CAS  Google Scholar 

  • Anderson SD, Gums JG (2008) Ceftobiprole: an extended-spectrum anti-methicillin-resistant Staphylococcus aureus cephalosporin. Ann Pharmacother 42:806–816

    Article  CAS  Google Scholar 

  • Ariyo BT, Bucke C, Keshavarz T (1997) Alginate oligosaccharides as enhancers of penicillin production in cultures of Penicillium chrysogenum. Biotechnol Bioeng 53:17–20

    Article  CAS  Google Scholar 

  • Arroyo M, de la Mata I, Hormigo D, Castillon MP, Acebal C (2005) Production and characterization of microbial β-lactam acylases. In: Mellado E, Barredo JL (eds) Microorganisms for industrial enzymes and biocontrol. Research Signpost, Trivandrum, pp 129–151

    Google Scholar 

  • Barber MS, Giesecke U, Reichert A, Minas W (2004) Industrial enzymatic production of cephalosporin-based β-lactams. Adv Biochem Eng Biotechnol 88:179–215

    CAS  Google Scholar 

  • Barredo JL, Diez B, Alvarez E, Martin JF (1989) Large amplification of 35-kb DNA fragment carrying two penicillin biosynthetic genes in high penicillin producing strains of P.chrysogenum. Curr Genet 16:453–459

    Article  CAS  Google Scholar 

  • Basch J, Franceschini T, Tonzi S, Chiang SJD (2004) Expression of a cephalosporin C esterase gene in Acremonium chrysogenum for the direct production of deacetylcephalosporin C. J Ind Microbiol Biotechnol 31:531–539

    Article  CAS  Google Scholar 

  • Bebbington C, Yarranton G (2008) Antibodies for the treatment of bacterial infections: current experience and future prospects. Curr Opin Biotechnol 19:613–619

    Article  CAS  Google Scholar 

  • Bianchi D, Bortolo R, Golini P, Cesti P (1998) Application of immobilized enzymes in the manufacture of beta-lactam antibiotics. Chim Ind 80:875–885

    Google Scholar 

  • Binder RG, Numata K, Lowe DA, Murakami T, Brown JL (1993) Isolation and characterization of a Pseudomonas strain producing glutaryl-7-aminocephalosporanic acid acylase. Appl Environ Microbiol 59:3321–3326

    CAS  Google Scholar 

  • Bovenberg AR, Koekman PB, Schipper D, Vollebregt WA (2002) Verfahren zur Herstellung von 7-ADCA durch Umsetzung Penicillins G mittels Expandase. German Patent DE6961–7228

    Google Scholar 

  • Brakhage AA, Caruso ML (2004) Biotechnical genetics of antibiotic biosynthesis. In: Kueck U (ed.) Genetics and biotechnology. The Mycota II, 2nd edn. Springer, Berlin Heidelberg New York, pp 317–353

    Chapter  Google Scholar 

  • Brakhage AA, Sproete P, Al-Abdallah Q, Gehrke A, Plattner H, Tuencher, Andre (2004) Regulation of penicillin biosynthesis in filamentous fungi. Adv Biochem Eng Biotechnol 88:45–90

    CAS  Google Scholar 

  • Bruno JG, Miner JC (2008) Therapeutic aptamers stabilized by 3′-conjugation to proteins. US Patent 2008 161 236

    Google Scholar 

  • Bruno JG, Carillo MP, Phillips T (2008) In vitro antibacterial effects of antilipopolysaccharide DNA aptamer-C1qrs complexes. Fol Microbiol 53:295–302

    Article  CAS  Google Scholar 

  • Business Insights Report (2007) The global anti-infectives market outlook to 2011. Business Insights, London

    Google Scholar 

  • Business Insights Report (2008) The global anti-infectives market outlook to 2013. Business Insights, London

    Google Scholar 

  • Cairns BJ, Timms AR, Jansen VAA, Connerton IF, Payne RJH (2009) Quantitative models of in vitro bacteriophage-host dynamics and their application in phage therapy. PLoS Pathogens 5:e1000253

    Article  CAS  Google Scholar 

  • Campos C, Fernandez FJ, Sierra EC, Fierro F, Garay A, Barrios-Gonzalez J (2008) Improvement of penicillin yields in solid-state and submerged fermentation of Penicillium chrysogenum by amplification of the penicillin biosynthetic gene cluster. World J Microbiol Biotechnol 24:3017–3022

    Article  CAS  Google Scholar 

  • Cantwell CA, Beckmann RJ, Dotzlaf RJ, Fisher DL, Skatrud PL, Yeh WK, Queener SW (1990) Cloning and expression of a hybrid S.clavuligerus cefE gene in P.chrysogenum. Curr Genet 17:213–221

    Article  CAS  Google Scholar 

  • Cegelski L, Marshall GR, Eldridge GR, Hultgren SJ (2008) The biology and future prospects of antivirulence therapies. Nat Rev 6:17–27

    Article  CAS  Google Scholar 

  • Chandel AK, Rao LV, Narasu ML, Singh OV (2008) The realm of penicillin G acylase in β-lactam antibiotics. Enzyme Microb Technol 42:199–207

    Article  CAS  Google Scholar 

  • Christensen LH, Nielsen J, Villadsen J (1994) Degradation of penicillin V in fermentation media. Biotechnol Bioeng 44:165–169

    Article  CAS  Google Scholar 

  • Conder MJ, Crawford L, McAda PC, Rambosek JE (1992) Novel bioprocess for preparing 7-ADCA. European Patent EP 0532 341

    Google Scholar 

  • Conder MJ, Almeida N, Behrens S, Crawford L, Delawder S, Hoerner T, McAda PC, Rambosek JE, Reeves C, Schimmell T, Stepan AM, Stieber R, Tong IT, Vinci V (1994) Cephalosporin production in Penicillium chrysogenum: the application of metabolic engineering to the development of a new biocatalytic process. Biotechnol Appl Biocatal 1994:20–24

    Google Scholar 

  • Cornaglia G, Rossolini GM (2009) Forthcoming therapeutic perspectives for infections due to multidrug-resistant Gram-positive pathogens. Clin Microbiol Infect 15:218–223

    Article  CAS  Google Scholar 

  • Crawford L, Stepan AM, McAda PC, Rambosek JA, Conder MJ, Vinci VA, Reeves C (1995) Production of cephalosporin intermediates by feeding adipic acid to recombinant Penicillium chrysogenum strains expressing ring expansion activity. Bio/Technology 13:58–62

    Article  CAS  Google Scholar 

  • Davin-Regli A, Bolla JM, James CE, Lavigne JP, Chevalier J, Garnotel E, Molitor A, Pages JM (2008) Membrane permeability and regulation of drug «influx and efflux» in enterobacterial pathogens. Curr Drug Targets 9:750–759

    Article  CAS  Google Scholar 

  • De la Mata IAM, Castillon MP, Acebal C (2005) Production and characterization of enzymes involved in the industrial production of semisynthetic β-lactam antibiotics. Rec Res DevAppl Microbiol Biotechnol 2:1–20

    CAS  Google Scholar 

  • Delcour AH (2009) Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta 1794:808–816

    Article  CAS  Google Scholar 

  • Del Pozo JL, Patel R (2008) Ceftobiprole medocaril: a new generation β-lactam. Drugs Today 44:801–825

    Article  CAS  Google Scholar 

  • Demain AL, Zhang J (1998) Cephalosporin C production by Cephalosporium acremonium: the methionine story. Crit Rev Biotechnol 18:283–294

    Article  CAS  Google Scholar 

  • Deresinski SC (2008) Ceftobiprole: breaking therapeutic dogmas of the β-lactam class. Diagn Microbiol Infect Dis 61:82–85

    Article  CAS  Google Scholar 

  • DiGuilmi AM, Mouz N, Martin L, Hoskins J, Jaskunas SR, Dideberg O, Vernet T (1999) Glycosyltransferase domain of penicillin-binding protein 2a from Streptococcus pneumoniae is membrane assiciated. J Bacteriol 181:2773–2781

    CAS  Google Scholar 

  • Dreyer J, Eichhorn H, Friedlin E, Kürnsteiner H, Kück U (2009) A homologue of the Aspergillus velvet gene regulates both cephalosporin C biosynthesis and hyphal fragmentation in Acremonium chrysogenum. Appl Env Microbiol 73:3412–3422

    Article  CAS  Google Scholar 

  • Elmayergi H, Moo-Young M (1973) Effect of a polymer additive on mass transfer into mold pellets. In: Sikyta B (ed) Advances in microbial engineering. Biotechnol Bioeng Symp 4:507–512

    Google Scholar 

  • Evers ME, Trip H, van den Berg MA, Bovenberg RAL, Driessen AJM (2004) Compartmentalization and transport in beta-lactam antibiotics biosynthesis. Adv Biochem Eng Biotechnol 88:111–135

    CAS  Google Scholar 

  • Feng B, Friedlin E, Marzlug GA (1994) A reporter gene analysis of penicillin biosynthesis gene expression in Penicillium chrysogenum and its regulation by nitrogen and glucose catabolite repression. Appl Env Microbiol 60:4432–4439

    CAS  Google Scholar 

  • Fierro F, Barredo JL, Diez B, Guiterrez S, Fernandez J, Martin JF (1995) The penicillin cluster is amplified in tandem repeats linked by conserved hexanucleotide sequences. Proc Natl Acad Sci USA 92:6200–6204

    Article  CAS  Google Scholar 

  • French GL (2008) What’s new and not so new on the antimicrobial horizon? Clin Microbiol Infect 14:19–29

    Article  CAS  Google Scholar 

  • Fritz-Wolf K, Koller KP, Lange G, Liesum A, Sauber K, Schreuder K, Kabsch W (2002) Structure based prediction of modifications in glutarylamidase to allow single-step enzymatic production of 7-aminocephalosporanic acid from cephalosporin C. Prot Sci 11:92–103

    Article  CAS  Google Scholar 

  • Fukagawa M, Isogai T, Aramori I, Iwami M, Kojo H, Ono T, Kohsaka M, Imanaka H (1991) Direct production of 7-aminodeacetylcephalosporanic acid by Acremonium chrysogenum Hm 178. Agric Biol Chem 55:2163–2165

    Article  CAS  Google Scholar 

  • Gales AC, Sader HS (2008) Novel β-lactams. Braz J Infect Dis 12:46–58

    CAS  Google Scholar 

  • Goo KS, Chun S, Sim TS (2008) Relevant double mutations in bioengineered Streptomyces clavuligerus deacetoxycephalosporin C synthase result in higher binding specificities which improve penicillin bioconversion. Appl Env Microbiol 74:1167–1175

    Article  CAS  Google Scholar 

  • Gosh AC, Bora MM, Dutta NN (1996) Developments in liquid membrane separation of beta-lactam antibiotics. Bioseparation 6:91–105

    Google Scholar 

  • Gosh AC, Mathur RK, Dutta NN (1997) Extraction and purification of cephalosporin antibiotics. Adv Biochem Eng Biotechnol 56: 111–145

    Google Scholar 

  • Gupta V (2007) An update on newer β-lactamases. Ind J Med Res 126:417–427

    CAS  Google Scholar 

  • Heim J, Shen Y, Wolfe S, Demain AL (1984) Regulation of isopenicillin N synthetase and deacetoxycephalosporin C synthetase by carbon source during the fermentation of Cephalosporin acremonium. Appl Microbiol Biotechnol 19:232–236

    Article  CAS  Google Scholar 

  • Ho CS, Lu-Kwang J, Baddour RF (1990) Enhancing penicillin fermentations by increased oxygen solubility through the addition of n-hexadecane. Biotechnol Bioeng 36:1110–1118

    Article  CAS  Google Scholar 

  • Hönlinger C, Kubicek CP (1989) Regulation of δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine and isopenicillin N biosynthesis in Penicillium chrysogenum by the α-aminoadipate pool size. FEMS Microbiol Lett 65:71–76

    Article  Google Scholar 

  • Hou X, Hu Z, Chen G, Li Y, Wang B, Li W (2009) Antibacterial mechanism and their therapeutic use of antimicrobial peptides. Weishengwuxue Tongbao 36:97–105

    CAS  Google Scholar 

  • Inal JM (2003) Phage therapy: a reappraisal of bacteriophages as antibiotics. Arch Immun Ther Exp 51:237–244

    CAS  Google Scholar 

  • Ingolla TD, Queener SW, Samson SM, Skatrud PL (1988) Recombinant DNA expression vectors and DNA compounds that encode deacetoxycephalosporin C synthetase and deacetylcephalosporin C synthetase. European Patent 0281 391

    Google Scholar 

  • Isogai T (1997) New processes for production of 7-aminocephalosporanic acid from cephalosporin. Drugs Pharm Sci 82:733–751

    CAS  Google Scholar 

  • Isogai T, Fukagawa M (1991) Direct production of 7-aminocephalosporanic acid and 7-aminodeacetylcephalosporanic acid by recombinant Acremonium chrysogenum. Actinomycetology 5:102–111

    Article  Google Scholar 

  • Isogai T, Fukagawa M, Aramori I, Iwami M, Kojo H, Ono T, Ueda Y, Kohsaka M, Imanaka H (1991) Construction of 7-aminocephalosporanic acid (7-ACA) biosynthesis operon and direct productionof 7-ACA in Acremonium chrysogenum. Bio/Technology 9:188–191

    Article  CAS  Google Scholar 

  • Jacoby GA (2006) β-Lactamase nomenclature. Antimicrob Agent Chemother 50:1123–1129

    Article  CAS  Google Scholar 

  • Jagusztyn-Krynicka EK, Wyszynska A (2008) The decline of the antibiotic era - new approaches for antibacterial drug discovery. Pol J Microbiol 57:91–98

    CAS  Google Scholar 

  • Karaffa L, Sandor E, Kozma J, Szentirmai A (1996) Cephalosporin C production, morphology and alternative respiration of Acremonium chrysogenum in glucose limited chemostat. Bioechnol Lett 18:701–706

    Article  CAS  Google Scholar 

  • Karaffa L, Sandor E, Kozma J, Kubicek CP, Szentirmai A (1999) The role of the alternative respiratory pathway in the stimulation of cephalosporin C formation by soybean oil in Acremonium chrysogenum. Appl Microbiol Biotechnol 51:633–638

    Article  CAS  Google Scholar 

  • Keam SJ (2008) Doripenem: a review of its use in the treatment of bacterial infections. Drugs 68:2021–2057

    Article  CAS  Google Scholar 

  • Koller KP, Lange G, Sauber K, Fritz-Wolf K, Kabsch W (2002) Structure based modelling and engineering of glutarylamidase for single-step enzymatic production of 7-aminocephalosporanic acid from cephalosporin C. Patent WO 2002072806

    Google Scholar 

  • Küenzi MT (1980) Regulation of cephalosporin synthesis in Cephalosporium acremonium by phosphate and glucose. Arch Microbiol 128:78–83

    Article  Google Scholar 

  • Li B, Li S, Zhou Y, Zhao X, Zhu B (2006) Cloning and expression of Vitreoscilla haemoglobin gene (vgb) in Penicillium chrysogenum. Zhongguo Kangshengsu Zazhi 31:400–402

    CAS  Google Scholar 

  • Liras P, Asturias JA, Martin JF (1990) Phosphate control sequences involved in transcriptional regulation of antibiotic biosynthesis. Trends Biotechnol 8:184–188

    Article  CAS  Google Scholar 

  • Lodise TP, Patel N, Renaud-Mutart A, Gorodecky E, Fritsche TR, Jones RN (2008) Pharmacokinetic and pharamcodynamic profile of ceftobiprole. Diagn Microbiol Infect Dis 61:96–102

    Article  CAS  Google Scholar 

  • Lopez-Gallego F, Batencor L, Hidalgo A, Mateo C, Fernandez-Lafuente R, Guisan JM (2005) One-pot conversion of cephalosporin C to 7-aminocephalosporanic acid in the absence of hydrogen peroxide. Adv Synth Catal 347:1804–1810

    Article  CAS  Google Scholar 

  • Lornovskaja O, Zgurskaya HI, Bostian KA, Lewis K (2008) Multidrug efflux pumps. structure, mechanism and inhibition. In: Wax RG (ed) Bacterial resistance to antimicrobials, 2nd edn, CRC, Boca Raton, pp 45–69

    Google Scholar 

  • Lu TK, Collins JJ (2009) Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc Natl Acad Sci USA 106:4629–4634

    Article  CAS  Google Scholar 

  • Lübbe C, Jensen SE, Demain AL (1984) Prevention of phosphate inhibition of cephalosporin synthetases by ferrous ion. FEMS Microbiol Lett 25:75–90

    Article  Google Scholar 

  • Luo H, Li Q, Yu H, Shen Z (2004) Construction and application of fusion proteins of D-amino acid oxidase and glutaryl-7-aminocephalosporanic acid acylase for direct bioconversion of cephalosporin C to 7-aminocephalosporanic acid. Biotechnol Lett 26:939–945

    Article  CAS  Google Scholar 

  • Martin JF (1998) New aspects of genes and enzymes for β-lactam antibiotic synthesis. Appl Microbiol Biotechnol 50:1–15

    Article  CAS  Google Scholar 

  • Martin JF, Casqueiro J, Kosalkova K, Marcos AT, Gutierrez S (1999) Penicillin and cephalosporin biosynthesis: mechanism of carbon catabolite regulation of penicillin production. Antonie van Leeuwenhoek 75:21–31

    Article  CAS  Google Scholar 

  • Matsumara M, Yoshida T, Taguchi H (1982) Synthesis of cephalosporin C by a methionine analogue resistant mutant of Cephalosporium acremonium. Eur J Appl Microbiol Biotechnol 16:114–118

    Article  Google Scholar 

  • Meinke A, Nagy E, Hanner, M, Dewasthaly S, Stierschneider U (2004) Streptococcus pneumoniae antigens, polynucleotides, and antibodies for antagonist screening and for diagnosis and therapy of bacterial infection. Patent WO 2004 092 209

    Google Scholar 

  • Morrissey D, Haeberli P (2005) Nucleic acid mediated inhibitor of cytolysin toxin activity and uses thereof for diagnosis and for inhibiting enterococcus infection. US Patent 20050209182

    Google Scholar 

  • Mugnier P, Podglajen I, Goldstein FW, Collatz E (1998) Carbapenems as inhibitors of OXA-13, a novel, integron-encoded β-lactamase in Pseudomonas aerigunosa. Microbiology 144:1021–1031

    Article  CAS  Google Scholar 

  • Nagy E, Giefing C, von Gabain A (2008) Anti-infective antibodies: a new tool to prevent and to treat nosocomial diseases. Exp Rev Anti-Infect Ther 6:21–30

    Article  CAS  Google Scholar 

  • Ni N, Li M, Wang J, Wang B (2009) Inhibitors and antagonists of bacterial quorum sensing. Med Res Rev 29:65–124

    Article  CAS  Google Scholar 

  • Nishino K (2008) Roles of drug efflux pumps in bacterial drug resistance and virulence. Analysis to identify novel drug targets and counteract multidrug resistance and virulence. Jpn J Antibiot 61:105–113

    CAS  Google Scholar 

  • Nukaga M, Bethel CR, Thomson JM, Hujer AM, Distler A, Anderson VE, Knox JR, Bonomo RA (2008) Inhibition of class A β-lactamases by carbapenems: crystallographic observation of two conformations of meropenem in SHV-1. J Am Chem Soc 130:12656–12662

    Article  CAS  Google Scholar 

  • Oh B, Kim K, Park J, Yoon J, Han D, Kim Y (2004) Modifying the substrate specificity of penicillin G acylase by mutating active-site residues. Biochem Biophys Res Commun 319:486–492

    Article  CAS  Google Scholar 

  • O’Neill A (2008) New antibacterial agents treating infections caused by multi-drug resistant Gram-negative bacteria. Exp Opin Inv Drugs 17:297–302

    Article  Google Scholar 

  • Otten LG, Sio CF, Vrielink JC, Robbert H, Quax WJ (2002) Altering the substrate specificity of cephalosporin acykase by directed evolution of the subunit. J Biol Chem 277:42121–42127

    Article  CAS  Google Scholar 

  • Otten LG, Sio CF, Reis CR, Koch G, Cool RH, Quax WJ (2007) A highly active adipyl-cephalosporin acylase obtained via rational randomization. FEBS J 274:5600–5610

    Article  CAS  Google Scholar 

  • Pages JM, James CE, Winterhalter M (2008) The porin and the permeating antibiotic: a selective diffusion barrier in gram-negative bacteria. Nat Rev Microbiol 8:893–903

    Article  CAS  Google Scholar 

  • Perez F, Salata RA, Bonomo RA (2008) Current and novel antibiotics against resistant Gram-positive bacteria. Infect Drug Res 1:27–44

    Article  CAS  Google Scholar 

  • Pollegioni L, Lorenzi S, Rosini L, Marcone GL, Molla G, Verga R, Cabri W, Pilone MS (2005) Evolution of an acylase active on cephalosporin C. Protein Sci 14:3064–3076

    Article  CAS  Google Scholar 

  • Poole K (2007) Efflux pumps as antimicrobial resistance mechanisms. Ann Med 39:162–176

    Article  CAS  Google Scholar 

  • Prezelj A, Urleb U, Solmajer T (2008) Antibacterial combination of a tricyclic carbapenem and an antibiotic. Patent WO 2008098955

    Google Scholar 

  • Pusztahelyi T, Pocsi I, Kozma J, Szentirmai A (1997) Aging of Penicillium chrysogenum cultures under carbon starvation: I: morphological changes and secondary metabolism. Biotechnol Appl Biochem 81–86

    Google Scholar 

  • Revilla G, Lopez-Nieto MJ, Luengo JM, Martin JF (1984) Carbon catabolite repression of penicillin biosynthesis by Penicillium chrysogenum. J Antibiot 37:781–789

    Article  CAS  Google Scholar 

  • Revilla G, Ramos FR, Lopez-Nieto MJ, Alvarez E, Martin JF (1986) Glucose represses formation of δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine and isopenicillin N synthase but not penicillin acyltransferase in Penicillium chrysogenum. J Bacteriol 168: 947–952

    CAS  Google Scholar 

  • Rodrigues de Oliveira J, Nunes FB, Pires MGS, Melo DA, Donadio MVF (2008) Antibodies as anti-infective agents in medicinal chemistry. Anti-Infect Agents Med Chem 7:249–257

    CAS  Google Scholar 

  • Rodriguez-Saiz M, de la Fuente JL, Barredo JL (2005) Metabolic engineering of Acremonium chrysogenum to produce deacetoxycephalosporin C and bioconversion to 7-aminodeacetoxycephalosporanic acid. Methods Biotechnol 18:41–64

    CAS  Google Scholar 

  • Savjani JK, Gajjar AK, Savjani KT (2009) Mechanisms of resistance: useful tool to design antibacterial agents for drug resistant bacteria. Mini-Rev Med Chem 9:194–205

    Article  CAS  Google Scholar 

  • Schafer JJ, Goff DA, Mangino JE (2009) Doripenem: a new addition to the carbapenem class of antimicrobials. Rec Patents Anti-Infect Drug Discov 4:18–28

    Article  CAS  Google Scholar 

  • Schmidt FR (2004) The challenge of multidrug resistance. Appl Microbiol Biotechnol 63:355–343

    Google Scholar 

  • Schmidt FR (2005a) About the nature of RNA interference. Appl Microbiol Biotechnol 67:429–435

    Article  CAS  Google Scholar 

  • Schmidt FR (2005b) Optimization and scale-up of industrial fermentation processes. Appl Microbiol Biotechnol 68:425–435

    Article  CAS  Google Scholar 

  • Schmitt EK, Hoff B, Kueck U (2004) Regulation of cephalosporin biosynthesis. Adv Biochem Eng Biotechnol 88:1–43

    CAS  Google Scholar 

  • Shen YQ, Heim J, Solomon NA, Wolfe S, Demain AL (1984) Repression of β-lactam production in Cephalosporium acremonium by nitrogen sources. J Antibiot 37:503–511

    Article  CAS  Google Scholar 

  • Sio CF, Quax WJ. (2004) Improved β-lactam acylases and their use as industrial biocatalysts. Curr Opin Biotechnol 15:349–355

    Article  CAS  Google Scholar 

  • Sio CF, Riemens AM, van der Laan JM, Verhaert RMD, Quax WJ (2002) Directed evolution of a glutary acylase into adipyl acylase. Eur J biochem 269:4495–4504

    Article  CAS  Google Scholar 

  • Sio CF, Otten LG, Cool RH, Quax WJ (2003) Analysis of a substrate specificity switch residue of cephalosporin acylase. Biochem Biophys Res Commun 312:755–760

    Article  CAS  Google Scholar 

  • Sio CF, Otten LG, Cool RH, Quax WJ (2005) Design of glutarylamidase mutant variants from Pseudomonas SY-77 for the preparation of 7-aminocephalosporanic acid from cephalosporin C. Patent WO 2005054452

    Google Scholar 

  • Skalweit Helfand M (2008) β-Lactams against emerging superbugs: progress and pitfalls. Expert Rev Clin Pharmacol 1:559–571

    Article  CAS  Google Scholar 

  • Skatrud PL (1992) Genetic engineering of β-lactam antibiotic biosynthetic pathways in filamentous fungi. Trends Biotechnol 10:324–329

    Article  CAS  Google Scholar 

  • Skatrud PL, Schwecke T, van Liempt H, Tobin MB (1997) Advances in the molecular genetics of β-lactam antibiotic biosynthesis. In: Kleinkauf H, von Doehren H (eds) Biotechnology, 2nd edn. American Chemical Society, Columbus, pp 247–276

    Chapter  Google Scholar 

  • Svarovsky S, Joshi L (2008) Biocombinatorial selection of carbohydrate binding agents of therapeutic significance. Curr Drug Discov Technol 5:20–28

    Article  CAS  Google Scholar 

  • Teijeira F, Ullan RV, Guerra SM, Garcia-Estrada C, Vaca I, Martin JF (2009) The transporter cefM involved in translocation of biosynthetic intermediates is essential for cephalosporin production. Biochem J 418:113–124

    Article  CAS  Google Scholar 

  • Usher J, Lewis MA, Hughes DW, Compton BJ (1988) Development of the cephalosporin C fermentation taking into account the instability of cephalosporin C. Biotechnol Lett 10:343–348

    Article  Google Scholar 

  • van den Berg MA, Albang R, Albermann K, Badger JH, Daran JM, Driessen AJM, Garcia-Estrada C, Fedorova ND, Harris DM, Heijne WHM, Joardar V, Kiel JAKW, Kovalchuk A, Martin JF, Nierman WC, Nijland JG, Pronk JT, Roubos JA, van der Klei IJ, van Peij NME, Veenhuis M, von Doehren H, Wagner C, Wortman J, Bovenberg RAL (2008) Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat Biotechnol 26:1161–1168

    Article  CAS  Google Scholar 

  • van Suijdam JC, Kossen NWF, Paul PG (1980) An inoculum technique for the production of fungal pellets. Eur J Appl Microbiol Biotechnol 10:211–221

    Article  CAS  Google Scholar 

  • Velasco J, Adrio JL, Moreno MA, Diez B; Esteban Morales M, Bernasconi E, Barredo JL (2000a) Production of 7-aminodesacetoxycephalosporanic acid by culture of cefE-expressing Acremonium mutants and enzymic conversion of desacetoxycephalosporin C. Patent DO2000078989

    Google Scholar 

  • Velasco J, Adrio JL, Moreno MA, Diez B, Soler G, Barredo JL (2000b) Acremonium chrysogenum. Nat Biotechnol 18:857–861

    Article  CAS  Google Scholar 

  • Vergidis PI, Falagas ME (2008) New antibiotic agents for bloodstream infections. Int J Antimicrob Ag 32:S60-S65

    Article  CAS  Google Scholar 

  • Wang W, Zheng X (2008) Progress on research and application of antibacterial peptide. Guoji Yixue Jishengchongbing Zazhi 35:52–56

    Google Scholar 

  • Wang Y, Mealy N (2008) Ceftaroline fosamil: cephalosporin antibiotic. Drugs Fut 33:302–308

    Article  CAS  Google Scholar 

  • Wei CL, Yang YB, Wang WC, Liu WC, Hsu JS, Tsai YC (2003) Engineering Streptomyces clavuligerus deacetoxycephalosporin C synthase for optimal ring expansion activity toward penicillin G. Appl Env Microbiol 69:2306–2312

    Article  CAS  Google Scholar 

  • Weil J, Miramonti J, Ladisch MR (1995) Biosynthesis of cephalosporin C: regulation and recombinant technology. Enzyme Microb Technol 17:88–90

    Article  CAS  Google Scholar 

  • Wilmouth RC, Westwood NJ, Anderson K, Brownlee W, Claridge TD, Clifton IJ (1998) Inhibition of elastase by N-sulfonylaryl beta-lactams: anatomy of a stable acyl-enzyme complex. Biochemistry 37:17506–17513

    Article  CAS  Google Scholar 

  • Xu P, Ren Z, Wang F, Feng M, Zhang J, Dai M, Wei C, Mu M, Jia Q (2006) Increase penicillin production by Penicillium chrysogenum expressing Vitreoscilla Hb (VHb). Patent CN 2004–10092430

    Google Scholar 

  • Yong Kim E, Young JY (1992) Analysis of broth rheology with cell morphology in Cephalosporium fermentation. Biotechnol Tech 6:501–506

    Article  Google Scholar 

  • Zhang J, Demain A (1992) ACV synthetase. Crit Rev Biotechnol 12:245–260

    Article  CAS  Google Scholar 

  • Zhang J, Greasham R (1999) Chemically defined media for commercial fermentations. Appl Microbiol Biotechnol 51:407–421

    Article  CAS  Google Scholar 

  • Zhang J, Wolfe S, Demain AL (1988) Phosphate repressible and inhibitible β-lactam synthetases in Cephalosporium acremonium strain C-10. Appl Microbiol Biotechnol 29:242–247

    CAS  Google Scholar 

  • Zhang J, Wolfe S, Demain AL (1989) Carbon source regulation of the ACV synthetase in Cephalosporium acremonium C-10. Curr Microbiol 18:361–367

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank-Rainer Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmidt, FR. (2011). The β-Lactam Antibiotics: Current Situation and Future Prospects in Manufacture and Therapy. In: Hofrichter, M. (eds) Industrial Applications. The Mycota, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11458-8_5

Download citation

Publish with us

Policies and ethics