Skip to main content

Fungal Soil Bioremediation: Developments Towards Large-Scale Applications

  • Chapter
  • First Online:
Industrial Applications

Part of the book series: The Mycota ((MYCOTA,volume 10))

Abstract

Fungal soil bioremediation is a promising technique to clean up soil contaminated with organic compounds. The development towards large-scale applications has been slow and expensive, ongoing for almost three decades. Today feasible applications have been tested but they are still not largely in use. Fungal remediation techniques rely not only on suitable organisms obtained through screening but also on their inoculation and their interaction with natural soil microflora. Modern techniques utilize the strong abilities of fungi, e.g. to degrade larger and more recalcitrant molecules, and combine them with the natural ability of the soil microflora to handle part of the cleaning process. In an example perforated tubes are filled with fungal bark inoculum, added to piles with contaminated soil to initiate and support degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersson BE, Tornberg K, Henrysson T, Olsson S (2001) Three-dimensional outgrowth of a wood-rotting fungus added to a contaminated soil from a former gasworks site. Bioresour Technol 78:37–45

    Article  CAS  Google Scholar 

  • Antizar-Ladislao B (2008) Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment. A review. Environ Int 34:292–308

    Article  CAS  Google Scholar 

  • Auriol M, Filali-Meknassi Y, Tyagi RD, Adams CD, Surampalli RY (2006) Endocrine disrupting compounds removal from wastewater, a new challenge. Process Biochem 41:525–539

    Article  CAS  Google Scholar 

  • Axelsson J, Nilsson U, Terrazas E, Aliaga TA, Welander U (2006) Decolorization of the textile dyes Reactive Red 2 and Reactive Blue 4 using Bjerkanderasp. strain BOL 13 in a continuous rotating biological contactor reactor. Enzyme Microb Technol 39:32–37

    Article  CAS  Google Scholar 

  • Axtell C, Johnston CG, Bumpus JA (2000) Bioremediation of soil contaminated with explosives at the Naval Weapons Station Yorktown. Soil Sediment Contam 9:537–548

    Article  CAS  Google Scholar 

  • Baldi F, Leonardi V, D’Annibale A, Piccolo A, Zecchini F, Petruccioli M (2007) Integrated approach of metal removal and bioprecipitation followed by fungal degradation of organic pollutants from contaminated soils. Eur J Soil Biol 43:380–387

    Article  CAS  Google Scholar 

  • Baldrian P, in der Wiesche C, Gabriel J, Nerud F, Zadrazil F (2000) Influence of cadmium and mercury on activities of ligninolytic enzymes and degradation of polycyclic aromatic hydrocarbons by Pleurotus ostreatusin soil. Appl Environ Microbiol 66:2471–2478

    Article  CAS  Google Scholar 

  • Barclay M, Hart A, Knowles CJ, Meeussen JCL, Tett VA (1998) Biodegradation of metal cyanides by mixed and pure cultures of fungi. Enzyme Microb Technol 22:223–231

    Article  CAS  Google Scholar 

  • Bending GD, Friloux M, Walker A (2002) Degradation of contrasting pesticides by white rot fungi and its relationship with ligninolytic potential. FEMS Microbiol Lett 212:59–63

    Article  CAS  Google Scholar 

  • Bernat P, DÅ‚ugonski J (2002) Degradation of tributyltin by the filamentous fungus Cunninghamella elegans, with involvement of cytochrome P-450. Biotechnol Lett 24:1971–1974

    Article  CAS  Google Scholar 

  • Bhatt M, Cajthaml T, Å aÅ¡ek V (2002) Mycoremediation of PAH-contaminated soil. Fol Microbiol 47:255–258

    Article  CAS  Google Scholar 

  • Boonchan S, Britz ML, Stanley GA (2000) Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Appl Environ Microbiol 66:1007–1019

    Article  CAS  Google Scholar 

  • Boyle CD (1995) Development of a practical method for inducing white-rot fungi to grow into and degrade organopollutants in soil. Can J Microbiol 41:345–353

    Article  CAS  Google Scholar 

  • Carballa M, Omil F, Lema JM (2005) Removal of cosmetic ingredients and pharmaceuticals in sewage primary treatment. Water Res 39:4790–4796

    Article  CAS  Google Scholar 

  • Cerniglia CE (1997) Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation. J Indust Microbiol Biotechnol 19:324–333

    Article  CAS  Google Scholar 

  • Cerniglia CE, Gibson DT (1979) Oxidation of benzo[a]pyrene by the filamentous fungus Cunnighamella elegans. J Biol Chem 254:2174–2180

    Google Scholar 

  • Cerniglia CE, White GL, Heflich RH (1985) Fungal metabolism and detoxification of polycyclic aromatic hydrocarbons. Arch Microbiol 143:105–110

    Article  CAS  Google Scholar 

  • Cha DK, Chiu PC, Kim SD, Chang JS (1999) Treatment technologies. Water Environ Res 71:870–885

    Article  CAS  Google Scholar 

  • Davis MW, Glaser JA, Evans JW, Lamar RT (1993) Field-evaluation of the lignin-degrading fungus Phanerochaete sordidato treat creosote-contaminated soil. Environ Sci Technol 27:2572–2576

    Article  CAS  Google Scholar 

  • Dix NJ, Webster J (1995) Fungal ecology. Chapman & Hall, Cambridge

    Google Scholar 

  • Dua M, Singh A, Sethunathan N, Johri AK (2002) Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol 59:143–152

    Article  CAS  Google Scholar 

  • Duran R, Deschler C, Precigou S, Goulas P (2002) Degradation of chlorophenols by Phanerochaete chrysosporium: effect of 3,4-dichlorophenol on extracellular peroxidase activities. Appl Microbiol Biotechnol 59:284–288

    Article  CAS  Google Scholar 

  • EarthFaxEngineering (2008) Fungal Bioremediation. http://www.earthfax.com/Page/Fungal+Bioremediation.aspx. Consulted in July 8 2009

  • Eggen T (1999) Application of fungal substrate from commercial mushroom production – Pleuorotus ostreatus –for bioremediation of creosote contaminated soil. Int Biodeter Biodegr 44:117–126

    Article  CAS  Google Scholar 

  • Eggen T, Majcherczyk A (1998) Removal of polycyclic aromatic hydrocarbons (PAH) in contaminated soil by white rot fungus Pleurotus ostreatus. Int Biodeter Biodegr 41:111–117

    Article  CAS  Google Scholar 

  • Eichlerova I, Homolka L, Nerud F, Zadrazil F, Baldrian P, Gabriel J (2000) Screening of Pleurotus ostreatusisolates for their ligninolytic properties during cultivation on natural substrates. Biodegradation 11:279–287

    Article  CAS  Google Scholar 

  • El Fantroussi S, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8:268–275

    Article  CAS  Google Scholar 

  • Esposito E, da Silva M (1998) Systematics and environmental application of the genus Trichoderma. Crit Rev Microbiol 24:89–98

    Article  CAS  Google Scholar 

  • Ford CI, Walter M, Northott GL, Di HJ, Cameron KC, Trower T (2007) Fungal inoculum properties: Extracellular enzyme expression and pentachlorophenol removal in highly contaminated field soils. J Environ Qual 36:1599–1608

    Article  CAS  Google Scholar 

  • Gadd GM (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122:109–119

    Article  CAS  Google Scholar 

  • Garon D, Sage L, Seigle-Murandi F (2004) Effects of fungal bioaugmentation and cyclodextrin amendment on fluorene degradation in soil slurry. Biodegradation 15:1–8

    Article  CAS  Google Scholar 

  • Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30:1389–1414

    Article  CAS  Google Scholar 

  • Gramss G, Kirsche B, Voigt KD, Günther T, Fritsche W (1999) Conversion rates of five polycyclic aromatic hydrocarbons in liquid cultures of fifty-eight fungi and the concomitant production of oxidative enzymes. Mycol Res 103:1009–1018

    Article  CAS  Google Scholar 

  • Hakala TK, Maijala P, Konn J, Hatakka A (2004) Evaluation of novel wood-rotting polypores and corticioid fungi for the decay and biopulping of Norway spruce (Picea abies) wood. Enzyme Microb Technol 34:255–263

    Article  CAS  Google Scholar 

  • Hardison LK, Curry SS, Ciuffetti LM, Hyman MR (1997) Metabolism of diethyl ether and cometabolism of methyl tert-butyl ether by a filamentous fungus, a Graphiumsp. Appl Environ Microbiol 63:3059–3067

    CAS  Google Scholar 

  • Hatakka A (1994) Lignin-modifying enzymes from selected white-rot fungi – production and role in lignin degradation. FEMS Microbiol Rev 13:125–135

    Article  CAS  Google Scholar 

  • Herre A, Scheibner K, Fritsche W (1998) Bioremediation von 2,4,6-Trinitrotoluol-kontaminiertem Boden durch Pilze auf einem Rüstungsaltlastenstandort. TerraTech:52–55

    Google Scholar 

  • Hintikka V (1970) Studies on white-rot humus formed by higher fungi in forest soil. Commun Inst For Fenn 1970:68

    Google Scholar 

  • Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzyme Microb Technol 30:454–466

    Article  CAS  Google Scholar 

  • Hofrichter M, Fritsche W (1996) Depolymerization of low rank coal by extracellular fungal enzyme systems.1. Screening for low rank-coal-depolymerizing activities. Appl Microbiol Biotechnol 46:220–225

    Article  CAS  Google Scholar 

  • Holroyd M, Caunt P, Pohjala J, Eloranta I (1994) The degradation of chlorinated phenols by white rot fungi. Kemia-Kemi 21:708–710

    Google Scholar 

  • Jørgensen KS (2007) In situ bioremediation. Adv Appl Microbiol 61:285–305

    Article  CAS  Google Scholar 

  • Junghanns C, Moeder M, Krauss G, Martin C, Schlosser D (2005) Degradation of the xenoestrogen nonylphenol by aquatic fungi and their laccases. Microbiology 151:45–57

    Article  CAS  Google Scholar 

  • Kamei I, Kondo R (2005) Biotransformation of dichloro-, trichloro-, and tetrachlorodibenzo-p-dioxin by the white-rot fungus Phlebia lindtneri. Appl Microbiol Biotechnol 68:560–566

    Article  CAS  Google Scholar 

  • Kamei I, Watanabe M, Harada K, Miyahara T, Suzuki S, Matsufuji Y, Kondo R (2009) Influence of soil properties on the biodegradation of 1,3,6,8-tetrachlorodibenzo-p-dioxin and fungal treatment of contaminated paddy soil by white rot fungus Phlebia brevispora. Chemosphere 75:1294–1300

    Article  CAS  Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic combustion – the microbial degradation of lignin. Annu Rev Microbiol 41:465–505

    Article  CAS  Google Scholar 

  • Kitunen VH, Valo RJ, Salkinoja-Salonen MS (1987) Contamination of soil around wood preserving facilities by polychlorinated aromatic compounds. Environ Sci Technol 21:96–101

    Article  CAS  Google Scholar 

  • Kubatova A, Erbanova P, Eichlerova I, Homolka L, Nerud F, Å aÅ¡ek V (2001) PCB congener selective biodegradation by the white rot fungus Pleurotus ostreatusin contaminated soil. Chemosphere 43:207–215

    Article  CAS  Google Scholar 

  • Lamar RT, Dietrich DM (1990) Insitu depletion of pentachlorophenol from contaminated soil by Phanerochaetespp. Appl Environ Microbiol 56:3093–3100

    CAS  Google Scholar 

  • Lamar RT, Evans JW, Glaser JA (1993) Solid phase treatment of a pentachlorophenol contaminated soil using lignin degrading fungi. Environ Sci Technol 27:2566–2571

    Article  CAS  Google Scholar 

  • Lamar RT, Davis MW, Dietrich DM, Glaser JA (1994) Treatment of a pentachlorophenol contaminated and creosote contaminated soil using the lignin degrading fungus Phanerochaete sordida– a field demonstration. Soil Biol Biochem 26:1603–1611

    Article  CAS  Google Scholar 

  • Lau KL, Tsang YY, Chiu SW (2003) Use of spent mushroom compost to bioremediate PAH-contaminated samples. Chemosphere 52:1539–1546

    Article  CAS  Google Scholar 

  • Law WM, Lau WN, Lo KL, Wai LM, Chiu SW (2003) Removal of biocide pentachlorophenol in water system by the spent mushroom compost of Pleurotus pulmonarius. Chemosphere 52:1531–1537

    Article  CAS  Google Scholar 

  • LeÅ¡tan D, Lamar RT (1996) Development of fungal inocula for bioaugmentation of contaminated soils. Appl Environ Microbiol 62:2045–2052

    Google Scholar 

  • LeÅ¡tan D, Lamar RT (1999) Influence of humidity on production of pelleted fungal inoculum. World J Microbiol Biotechnol 15:349–357

    Article  Google Scholar 

  • LeÅ¡tan D, LeÅ¡tan M, Chapelle JA, Lamar RT (1996) Biological potential of fungal inocula for bioaugmentation of contaminated soils. J Indust Microbiol 16:286–294

    Article  Google Scholar 

  • Li PJ, Sun TH, Stagnitti F, Zhang CG, Zhang HR, Xiong XZ, Allinson G, Ma XJ, Allinson M (2002) Field-scale bioremediation of soil contaminated with crude oil. Environ Eng Sci 19:277–289

    Article  Google Scholar 

  • Lindqvist N, Tuhkanen T, Kronberg L (2005) Occurrence of acidic pharmaceuticals in raw and treated sewages and in receiving waters. Water Res 39:2219–2228

    Article  CAS  Google Scholar 

  • Mäentausta O, Steffen K (2008) Menetelmä saastuneen maa-aineksen puhdistamiseksi. B09C1/10, A62D3/02, B09C1/10, A62D3/00 edn. Mzymes Oy, Helsinki, p. 15

    Google Scholar 

  • Marco-Urrea E, Perez-Trujillo M, Vicent T, Caminal G (2009) Ability of white-rot fungi to remove selected pharmaceuticals and identification of degradation products of ibuprofen by Trametes versicolor. Chemosphere 74:765–772

    Article  CAS  Google Scholar 

  • Martens R, Zadrazil F (1998) Screening of white-rot fungi for their ability to mineralize polycyclic aromatic hydrocarbons in soil. Folia Microbiol 43:97–103

    Article  CAS  Google Scholar 

  • Meysami P, Baheri H (2003) Pre-screening of fungi and bulking agents for contaminated soil bioremediation. Adv Environ Res 7:881–887

    Article  CAS  Google Scholar 

  • Morgan P, Lee SA, Lewis ST, Sheppard AN, Watkinson RJ (1993) Growth and biodegradation by white-rot fungi inoculated into soil. Soil Biol Biochem 25:279–287

    Article  Google Scholar 

  • Nichols-Orians C (1991) Differential effects of condensed and hydrolyzable tannin on polyphenol oxidase activity of attine symbiotic fungus. J Chem Ecol 17:1811–1819

    Article  CAS  Google Scholar 

  • Novotny ÄŒ, Erbanova P, Å aÅ¡ek V, Kubatova A, Cajthaml T, Lang E, Krahl J, Zadrazil F (1999) Extracellular oxidative enzyme production and PAH removal in soil by exploratory mycelium of white rot fungi. Biodegradation 10:159–168

    Article  CAS  Google Scholar 

  • Paszczynski A, Crawford RL (1995) Potential for bioremediation of xenobiotic compounds by the white-rot fungus Phanerochaete chrysosporium. Biotechnol Progr 11:368–379

    Article  CAS  Google Scholar 

  • Persson Y, Shchukarev A, Öberg L, Tysklind M (2008) Dioxins, chlorophenols and other chlorinated organic pollutants in colloidal and water fractions of groundwater from a contaminated sawmill site. Environ Sci Pollut Res 15:463–471

    Article  CAS  Google Scholar 

  • Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33

    Article  CAS  Google Scholar 

  • Purnomo AS, Kamei I, Kondo R (2008) Degradation of 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (DDT) by brown-rot fungi. J Biosci Bioeng 105:614–621

    Article  CAS  Google Scholar 

  • Rodriguez E, Nuero O, Guillen F, Martinez AT, Martinez MJ (2004) Degradation of phenolic and non-phenolic aromatic pollutants by four Pleurotusspecies: the role of laccase and versatile peroxidase. Soil Biol Biochem 36:909–916

    Article  CAS  Google Scholar 

  • Rojas-Avelizapa NG, Roldan-Carrillo T, Zegarra-Martinez H, Munoz-Colunga AM, Fernandez-Linares LC (2007) A field trial for an ex-situ bioremediation of a drilling mud-polluted site. Chemosphere 66:1595–1600

    Article  CAS  Google Scholar 

  • Roy-Arcand L, Archibald FS (1991) Direct dechlorination of chlorophenolic compounds by laccases from Trametes (Coriolus) versicolor. Enzyme Microb Technol 13:194–203

    Article  CAS  Google Scholar 

  • Sack U, Hofrichter M, Fritsche W (1997) Degradation of polycyclic aromatic hydrocarbons by manganese peroxidase of Nematoloma frowardii. FEMS Microbiol Lett 152:227–234

    Article  CAS  Google Scholar 

  • Å aÅ¡ek V, Novotny ÄŒ, Vampola P (1998) Screening for efficient organopollutant fungal degraders by decolorization. Czech Mycol 50:303–311

    Google Scholar 

  • Å aÅ¡ek V, Bhatt M, Cajthaml T, Malachova K, Lednicka D (2003a) Compost-mediated removal of polycyclic aromatic hydrocarbons from contaminated soil. Arch Environ Contam Toxicol 44:336–342

    Article  CAS  Google Scholar 

  • Å aÅ¡ek V, Cajthaml T, Bhatt M (2003b) Use of fungal technology in soil remediation: A case study. Water Air Soil Pollut 3:5–14

    Google Scholar 

  • Scheibner E, Hofrichter M, Herre A, Michels J, Fritsche W (1997) Screening for fungi intensively mineralizing 2,4,6-trinitrotoluene. Appl Microbiol Biotechnol 47:452–457

    Article  CAS  Google Scholar 

  • Schmidt KR, Chand S, Gostomski PA, Boyd-Wilson KSH, Ford C, Walter M (2005) Fungal inoculum properties and its effect on growth and enzyme activity of Trametes versicolorin soil. Biotechnol Progr 21:377–385

    Article  CAS  Google Scholar 

  • Sims RC, Sims JL, Zollinger RL, Huling SG (1999) Bioremediation of soils contaminated with wood preservatives. In: Adriano DC, Bollag J-M, W.T. Frankenberger J, Sims RC (eds) Bioremediation of contaminated soils. American Society of Agronomy, Madison, pp 719–742

    Google Scholar 

  • Steffen KT, Hofrichter M, Hatakka A (2000) Mineralisation of 14C-labelled synthetic lignin and ligninolytic enzyme activities of litter-decomposing basidiomycetous fungi. Appl Microbiol Biotechnol 54:819–825

    Article  CAS  Google Scholar 

  • Steffen KT, Hatakka A, Hofrichter M (2002a) Removal and mineralization of polycyclic aromatic hydrocarbons by litter-decomposing basidiomycetous fungi. Appl Microbiol Biotechnol 60:212–217

    Article  CAS  Google Scholar 

  • Steffen KT, Hofrichter M, Hatakka A (2002b) Purification and characterization of manganese peroxidases from the litter-decomposing basidiomycetes Agrocybe praecoxand Stropharia coronilla. Enz Microb Technol 30:550–555

    Article  CAS  Google Scholar 

  • Steffen KT, Hatakka A, Hofrichter M (2003) Degradation of benzo[a]pyrene by the litter-decomposing basidiomycete Stropharia coronilla: Role of manganese peroxidase. Appl Environ Microbiol 69:3957–3964

    Article  CAS  Google Scholar 

  • Steffen KT, Schubert S, Tuomela M, Hatakka A, Hofrichter M (2007) Enhancement of bioconversion of high-molecular mass polycyclic aromatic hydrocarbons in contaminated non-sterile soil by litter-decomposing fungi. Biodegradation 18:359–369

    Article  CAS  Google Scholar 

  • Takada S, Nakamura M, Matsueda T, Kondo R, Sakai K (1996) Degradation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans by the white rot fungus Phanerochaete sordidaYK-624. Appl Environ Microbiol 62:4323–4328

    CAS  Google Scholar 

  • Tauber MM, Gübitz GM, Rehorek A (2008) Degradation of azo dyes by oxidative processes – laccase and ultrasound treatment. Bioresour Technol 99:4213–4220

    Article  CAS  Google Scholar 

  • Tornberg K, Bååth E, Olsson S (2003) Fungal growth and effects of different wood decomposing fungi on the indigenous bacterial community of polluted and unpolluted soils. Biol Fertil Soil 37:190–197

    CAS  Google Scholar 

  • Trejo-Hernandez MR, Lopez-Munguia A, Ramirez RQ (2001) Residual compost of Agaricus bisporusas a source of crude laccase for enzymic oxidation of phenolic compounds. Process Biochem 36:635–639

    Article  CAS  Google Scholar 

  • Tsutsumi Y, Haneda T, Nishida T (2001) Removal of estrogenic activities of bisphenol A and nonylphenol by oxidative enzymes from lignin-degrading basidiomycetes. Chemosphere 42:271–276

    Article  CAS  Google Scholar 

  • Tuomela M, Lyytikäinen M, Oivanen P, Hatakka A (1999) Mineralization and conversion of pentachlorophenol (PCP) in soil inoculated with the white-rot fungus Trametes versicolor. Soil Biol Biochem 31:65–74

    Article  CAS  Google Scholar 

  • Tuomela M, Steffen KT, Kerko E, Hartikainen H, Hofrichter M, Hatakka A (2005) Influence of Pb contamination in boreal forest soil on the growth and ligninolytic activity of litter-decomposing fungi. FEMS Microbiol Ecol 53:179–186

    Article  CAS  Google Scholar 

  • Uhnáková B, Petricková A, Biedermann D, Homolka L, Vejvoda V, Papousková B, Sulc M, Martinková L (2009) Biodegradation of brominated aromatics by cultures and laccase of Trametes versicolor. Chemosphere 76:826–832

    Article  CAS  Google Scholar 

  • Vaisvalavicius R, Motuzas A, Prosycevas I, Levinskaite L, Zakarauskaite D, Grigaliuniene K, Butkus V (2006) Effect of heavy metals on microbial communities and enzymatic activity in soil column experiment. Arch Agron Soil Sci 52:161–169

    Article  CAS  Google Scholar 

  • Valentin L, Lu-Chau TA, Lopez C, Feijoo G, Moreira MT, Lema JM (2007) Biodegradation of dibenzothiophene, fluoranthene, pyrene and chrysene in a soil slurry reactor by the white-rot fungus Bjerkanderasp BOS55. Process Biochem 42:641–648

    Article  CAS  Google Scholar 

  • Valentin L, Kluczek-Turpeinen B, Oivanen P, Hatakka A, Steffen K, Tuomela M (2009) Evaluation of basidiomycetous fungi for pretreatment of contaminated soil. J Chem Technol Biotechnol 84:851–858

    Article  CAS  Google Scholar 

  • Walter M, Guthrie JM, Sivakumaran S, Parker E, Slade A, McNaughton D, Boyd-Wilson KSH (2003) Screening of New Zealand native white-rot isolates for PCP degradation. Bioremed J 7:119–128

    Article  CAS  Google Scholar 

  • Walter M, Boul L, Chong R, Ford C (2004) Growth substrate selection and biodegradation of PCP by New Zealand white-rot fungi. J Environ Manage 71:361–369

    Article  CAS  Google Scholar 

  • Walter M, Boyd-Wilson K, Boul L, Ford C, McFadden D, Chong B, Pinfold J (2005) Field-scale bioremediation of pentachlorophenol by Trametes versicolor. Int Biodeter Biodegr 56:51–57

    Article  CAS  Google Scholar 

  • Van Aken B, Hofrichter M, Scheibner K, Hatakka AI, Naveau H, Agathos SN (1999) Transformation and mineralization of 2,4,6-trinitrotoluene (TNT) by manganese peroxidase from the white-rot basidiomycete Phlebia radiata. Biodegradation 10:83–91

    Article  CAS  Google Scholar 

  • Veignie E, Rafin C, Woisel P, Cazier F (2004) Preliminary evidence of the role of hydrogen peroxide in the degradation of benzo[a]pyrene by a non-white rot fungus Fusarium solani. Environ Pollut 129:1–4

    Article  CAS  Google Scholar 

  • Vieno NM, Harkki H, Tuhkanen T, Kronberg L (2007) Occurrence of pharmaceuticals in river water and their elimination a pilot-scale drinking water treatment plant. Environ Sci Technol 41:5077–5084

    Article  CAS  Google Scholar 

  • Weber R, Tysklind M, Gaus C (2008) Dioxin – contemporary and future challenges of historical legacies. Environ Sci Pollut Res 15:96–100

    Article  Google Scholar 

  • Wen XH, Jia YN, Li JX (2009) Degradation of tetracycline and oxytetracycline by crude lignin peroxidase prepared from Phanerochaete chrysosporium- a white rot fungus. Chemosphere 75:1003–1007

    Article  CAS  Google Scholar 

  • Wick LY, Remer R, Wurz B, Reichenbach J, Bran S, Scharfer F, Harms H (2007) Effect of fungal hyphae on the access of bacteria to phenanthrene in soil. Environ Sci Technol 41:500–505

    Article  CAS  Google Scholar 

  • Winquist E, Valentin L, Moilanen U, Leisola M, Hatakka A, Tuomela M, Steffen K (2009) Development of a fungal pre-treatment process for reduction of organic matter in contaminated soil. J Chem Technol Biotechnol 84:845–850

    Article  CAS  Google Scholar 

  • Woodward JD, Weber BW, Scheffer MP, Benedik MJ, Hoenger A, Sewell BT (2008) Helical structure of unidirectionally shadowed metal replicas of cyanide hydratase from Gloeocercospora sorghi. J Struct Biol 161:111–119

    Article  CAS  Google Scholar 

  • Wunch KG, Feibelman T, Bennett JW (1997) Screening for fungi capable of removing benzo[a]pyrene in culture. Appl Microbiol Biotechnol 47:620–624

    Article  CAS  Google Scholar 

  • Yadav JS, Quensen JF, Tiedje JM, Reddy CA (1995) Degradation of polychlorinated biphenyl mixtures (Aroclor-1242, Aroclor-1254, and Aroclor-1260) by the white-rot fungus Phanerochaete chrysosporiumas evidenced by congener-specific analysis. Appl Environ Microbiol 61:2560–2565

    CAS  Google Scholar 

  • Zhou J, Jiang WY, Ding JA, Zhang XD, Gao SX (2007) Effect of Tween 80 and beta-cyclodextrin on degradation of decabromodiphenyl ether (BDE-209) by white rot fungi. Chemosphere 70:172–177

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Finnish Funding Agency for Technology and Innovation (TEKES) for providing the financial support (SYMBIO program) to develop the fungal tube technique. The Graduate School of Environmental Science and Technology (EnSTe) and the companies Niska & Nyssönen Oy and Mzymes Oy are acknowledged for their support. We thank both Erika Winquist and Lara Valentin for their substantial effort in the development and realization of the fungal tube concept.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kari Steffen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Steffen, K., Tuomela, M. (2011). Fungal Soil Bioremediation: Developments Towards Large-Scale Applications. In: Hofrichter, M. (eds) Industrial Applications. The Mycota, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11458-8_22

Download citation

Publish with us

Policies and ethics