Skip to main content

Bioherbicides

  • Chapter
  • First Online:
Industrial Applications

Part of the book series: The Mycota ((MYCOTA,volume 10))

Abstract

A considerable number of plant pathogens have been studied for their possible use as bioherbicides for the control of weeds. Only a few have proven adequately virulent to control weed species and to compete with commercial chemical herbicides. The majority of plant pathogenic bacteria and fungi evaluated for control of weeds cause inconsequential disease symptoms or reductions in a weed population. This observed suppression is not adequate to limit expansion of the weed population much less eradicate it. In the previous edition of this book, we proposed that the effectiveness of bioherbicides could be significantly enhanced by selecting plant-pathogenic fungi or bacteria that overproduced and excreted an inhibitory amino acid. This technology is effectively being applied to plant-pathogenic fungi for control of the parasitic plants witchweed (Striga spp.) and broomrape (Orobanche spp., Phelipanchespp.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Phytophtora infestans is not a true fungus (Eumycota) and belongs to the Oomycetes classified under a different kingdom altogether: Chromalveolata (formerly Stramenopila; previously Chromista).

References

  • Abu-Dieyeh MH, Watson AK (2006) Effect of turfgrass mowing height on biocontrol of dandelion with Sclerotinia minor. Biocontrol Sci Technol 16:509–524

    Article  Google Scholar 

  • Abu-Dieyeh MH, Watson AK (2007) Efficacy of Sclerotinia minor for dandelion control: effect of dandelion accession, age and grass competition. Weed Res 47:63–72

    Article  Google Scholar 

  • Amsellem Z, Kleifeld Y, Kerenyi Z, Hornok L, Goldwasser Y, Gressel J (2001) Isolation, identification, and activity of mycoherbicidal pathogens from juvenile broomrape plants. Biol Control 21:274–284

    Article  CAS  Google Scholar 

  • Amsellem Z, Cohen BA, Gressell J (2002) Engineering hypervirulence in a mycoherbicidal fugus for efficient weed control. Nat Biotechnol 20:1035–1039

    Article  CAS  Google Scholar 

  • Andolfi A, Boari A, Evidente A, Vurro M (2005) Metabolites inhibiting germination of Orobanche ramosa seeds produced by Myrothecium verrucaria and Fusarium compactum. J Agric Food Chem 53:1598–1603

    Article  CAS  Google Scholar 

  • Babiker AGT, Ejeta G, Butler LG, Woodson WR (1993) Ethylene biosynthesis and strigol-induced germination of Striga asiatica. Physiol Plant 88:359–365

    Article  CAS  Google Scholar 

  • Bacon CW, Porter JK, Norred WP, Leslie JF (1996) Production of fusaric acid by Fusarium species. Appl Environ Microbiol 62:4039–4043

    CAS  Google Scholar 

  • Badu-Apraku B, Yallou GC (2009) Registration of striga-resistant and drought-tolerant tropical early maize populations TZE-W pop DT STR C-4 and TZE-Y pop DT STR C-4. J Plant Reg 3:86–90

    Article  Google Scholar 

  • Bailey BA (1995) Purification of a protein from that Fusarium oxysporum that induces ethylene and necrosis in leaves of Erythroxylum coca. Phytopathology 85:1250–1255

    Article  CAS  Google Scholar 

  • Bailey BA, Apel-Birkhold PC, Akingbe OO, Ryan JL, O’Neill NR, Anderson JD (2000) Nep1 protein from Fusarium oxysporum enhances biological control of opium poppy by Pleospora papveracea. Phytopathology 90:812–818

    Article  CAS  Google Scholar 

  • Becker E, Ball LA, Dumas MT, Pitt DG, Wall RE, Hintz WE (1999) Chondrostereum purpureum as a biological control agent in forest vegetation management. III. Infection survey of a national field trial. Can J For Res 29:859–865

    Article  Google Scholar 

  • Becker E, Shamoun SF, Hintz WE (2005) Efficacy and environmental fate of Chondrostereum purpureum used as a biological control for red alder (Alnus rubra). Biol Control 33:269–277

    Article  Google Scholar 

  • Berner DK, Schaad NW, Volksch B (1999) Use of ethylene-producing bacteria for stimulation of Striga spp. seed germination. Biol Control 15:274–282

    Article  Google Scholar 

  • Boss D, Maurhofer M, Zala M, Defago G, Brunner PC (2007) ISSR fingerprinting for the assessment of the bindweed biocontrol agent Stagonospora convolvuli LA39 after field release. Lett Appl Microbiol 45:244–251

    Article  CAS  Google Scholar 

  • Bouizgarne B, El-Maarouf-Bouteau H, Madiona K, Biligui B, Monestiez M, Pennarun AM, Amiar Z, Rona JP, Ouhdouch Y, El Hadrami I, Bouteau F (2006) A putative role for fusaric acid in biocontrol of the parasitic angiosperm Orobanche ramosa. Mol Plant Microb Interact 19:550–556

    Article  CAS  Google Scholar 

  • Bowers RC (1986) Commercialization of Collego – an industrialist’s view. Weed Sci 24 [Suppl 1]:24–25

    Google Scholar 

  • Ciotola M, DiTommaso A, Watson AK (2000) Chlamydospore production, inoculation methods and pathogenicity of Fusarium oxysporum M12-4A, a biocontrol for Striga hermonthica. Biocontrol Sci Technol 10:129–145

    Article  Google Scholar 

  • Cipriani MG, Stea G, Moretti A, Altomare C, Mule G, Vurro, M (2009) Development of a PCR-based assay for the detection of Fusarium oxysporum strain FT2, a potential mycoherbicide of Orobanche ramosa. Biol Control 50:78–84

    Article  CAS  Google Scholar 

  • Cohen BA, Amsellem Z, Maor R, Sharon A, Gressel J (2002) Transgenically enhanced expression of indole-3-acetic acid confers hypervirulence to plant pathogens. Phytopathology 92:590–596

    Article  CAS  Google Scholar 

  • Cullen JM, Kable PF, Catt M (1973) Epidemic spread of a rust imported for biological control. Nature 244:462–464

    Article  Google Scholar 

  • De Groote H, Wangare L, Kanampiu F, Odendo M, Diallo A, Karaya H, Friesen D (2008) The potential of a herbicide resistant maize technology for Striga control in Africa. Agric Syst 97:83–94

    Article  Google Scholar 

  • de Zelicourt A, Montiel G, Pouvreau JB, Thoiron S, Delgrange S, Simier P, Delavault P (2009) Susceptibility of Phelipanche and Orobanche species to AAL-toxin. Planta 230:1047–1055

    Article  Google Scholar 

  • Dhanapal GH, Struik PC (1996) Broomrape (Orobanche cernua) control before attachment to host through chemically or biologically manipulating seed germination. Neth J Agric Sci 44:279–291

    CAS  Google Scholar 

  • DiPietro A, Roncero MIG (1996) Purification and characterization of an exo-polygalacturonase from the tomato vascular wilt pathogen Fusarium oxysporum f. sp. lycopersici. FEMS Microbiol Lett 145:295–299

    Article  CAS  Google Scholar 

  • Eberlein CV, Guttieri MJ, Mallory-Smith CA, Thill DC, Baerg RJ (1997) Altered acetolactate synthase activity in ALS-inhibitor resistant prickly lettuce (Lactuca serriola). Weed Sci 45:212–217

    CAS  Google Scholar 

  • Elzein A, Kroschel J, Leth V (2006) Seed treatment technology: an attractive delivery system for controlling root parasitic weed striga with mycoherbicide. Biocontrol Sci Technol 16:3–26

    Article  Google Scholar 

  • Elzein A, Kroschel J, Marley P, Cadisch G (2009) Does vacuum-packaging or co-delivered amendments enhance shelf-life of Striga–mycoherbicidal products containing Fusarium oxysporum f. sp strigae during storage? Biocontrol Sci Technol 19:349–367

    Article  Google Scholar 

  • Emge RG, Melching JS, Kingsolver CH (1981) Epidemiology of Puccinia chondrillina, a rust pathogen for the biological control of rush skeleton weed in the United States. Phytopathology 71:839–843

    Article  Google Scholar 

  • Forlani G, Suardi MC, Parisi B, Nielsen E (1994) Regulatory effects of exogenous branched-chain amino acid in Nicotiana plumbaginifolia cell-suspension cultures. Plant Growth Regul 14:203–209

    Article  CAS  Google Scholar 

  • Gressel J (2001) Potential failsafe mechanisms against the spread and introgression of transgenic hypervirulent biocontrol fungi. Trends Biotechnol 19:149–154

    Article  CAS  Google Scholar 

  • Gressel J (2009) Crops with target-site herbicide resistance for Orobanche and Striga control. Pest Manage Sci 65:560–565

    Article  CAS  Google Scholar 

  • Gressel J, Hanafi A, Head G, Marasas W, Obilana B, Ochanda J, Souissi T, Tzotzos G (2004) Major heretofore intractable biotic constraints to African food security that may be amenable to novel biotechnological solutions. Crop Prot 23:661–689

    Article  Google Scholar 

  • Harper GJ, Comeau PG, Hintz W, Wall RE, Prasad R, Hocker EM (1999) Chondrostereum purpureum as a biological control agent in forest vegetation management. II. Efficacy on Sitka alder and aspen in western Canada. Can J For Res 29:852–858

    Article  Google Scholar 

  • Hearne SJ (2009) Control – the striga conundrum. Pest Manage Sci 65:603–614

    Article  CAS  Google Scholar 

  • Hershenhorn J, Eizenberg H, Dor E, Kapulnik Y, Goldwasser Y (2009). Phelipanche aegyptiaca management in tomato. Weed Res 49:34–47

    Article  CAS  Google Scholar 

  • Hintz WE, Becker EM, Shamoun SF (2001) Development of genetic markers for risk assessment of biological control agents. Can J Plant Pathol 23:13–18

    Article  CAS  Google Scholar 

  • Humphrey AJ, Beale MH (2006) Strigol: biogenesis and physiological activity. Phytochemistry 67:636–640

    Article  CAS  Google Scholar 

  • Ibikunle OA, Menkir A, Kling JG, Smith MAK (2009) Evaluating intra row intra spacing to optimize techniques for artificial infestation of Striga hermonthica, screening for resistance in maize. Maydica 54:47–53

    Google Scholar 

  • Kanampiu F, Karaya H, Burnett M, Gressel J (2009) Needs for and effectiveness of slow release herbicide seed treatment Striga control formulations for protection against early season crop phytotoxicity. Crop Prot 28:845–853

    Article  CAS  Google Scholar 

  • Kohlschmid E, Sauerborn J, Müller-Stöver D (2009) Impact of Fusarium oxysporum on the holoparasitic weed Phelipanche ramosa: biocontrol efficacy under field-grown conditions. Weed Res 49:56–65

    Article  Google Scholar 

  • Magani IE, Ibrahim A, Avav T (2009) Fusarium oxysporum and post-emergence herbicide for the control of the parasitic plant Striga hermonthica in maize. Biocontrol Sci Technol 19:1023–1032

    Article  Google Scholar 

  • Marley PS, Shebayan JAY (2005) Field assessment of Fusarium oxysporum based mycoherbicide for control of Striga hermonthica in Nigeria. Biocontrol 50:389–399

    Article  Google Scholar 

  • Meir S, Amsellem Z, Al-Ahmad H, Safran E, Gressel J (2009a) Transforming a NEP1 toxin gene into two Fusarium spp. to enhance mycoherbicide activity on Orobanche – failure and success. Pest Manage Sci 65:588–595

    Article  CAS  Google Scholar 

  • Meir S, Larroche C, Al-Ahmad H, Gressel J (2009b) Fungal transformation of Colletotrichum coccodes with bacterial oahA to suppress defenses of Abutilon theophrasti. Crop Prot 28:749–755

    Article  CAS  Google Scholar 

  • Miersch O, Bohlmann H, Wasternack C (1999) Jamonates and related compounds from Fusarium oxysporum. Phytochemistry 50:517–523

    Article  CAS  Google Scholar 

  • Muller-Stover D, Kohlschmid E, Sauerborn J (2009) A novel strain of Fusarium oxysporum from Germany and its potential for biocontrol of Orobanche ramose. Weed Res 49:175–182

    Article  Google Scholar 

  • Oswald A (2005) Striga control – technologies and dissemination. Crop Prot 24:333–342

    Article  Google Scholar 

  • Oswald A, Ransom JK (2001) Striga control and improved farm productivity using crop rotation. Crop Prot 20:113–120

    Article  Google Scholar 

  • Pérez-de-Luque A, Fondevilla S, Pérez-Vich B, Aly R, Thoiron S, Simier P, Castillijo MA, Fernández-Martineez JM, Rubiales D, Delavault P (2009) Understanding Orobanche and Phelipanche–host plant interactions and developing resistance. Weed Res 49:8–22

    Article  Google Scholar 

  • Pitt DG, Dumas MT, Wall RE, Thompson DG, Lanteigne L, Hintz W, Sampson G, Wagner RG (1999) Chondrostereum purpureum as a biological control agent in forest vegetation management. I. Efficacy on speckled alder, red maple, and aspen in eastern Canada. Can J For Res 29:841–851

    Article  Google Scholar 

  • Rector GG (2008) Molecular biology approaches to control of intractable weeds: New strategies and complements to existing biological practices. Plant Sci 175:437–448

    Article  CAS  Google Scholar 

  • Rice AV, Thormann MN, Langor DW (2008) Mountain pine beetle-associated blue-stain fungi are differentially adapted to boreal temperatures. For Pathol 38:113–123

    Article  Google Scholar 

  • Rossman AY (2008) The impact of invasive fungi on agricultural ecosystems in the United States. Biol Invasions 11:1573–1464

    Google Scholar 

  • Rubiales D, Fernándeza-Aparicio M, Webmenn K, Joel DM (2009a) Revisiting strategies for reducing the seedbank of Orobanche and Phelipanche spp. Weed Res 49:23–33

    Article  Google Scholar 

  • Rubiales D, Verkleij J, Vurro M, Murdochs AJ, Joel DM (2009b) Parasitic plant management in sustainable agriculture. Weed Res 49:1–5

    Article  Google Scholar 

  • Sands DC, Pilgeram AL (2009) Methods for selecting hypervirulent biocontrol agents of weeds; why and how. Pest Manage Sci 65:581–587

    Article  CAS  Google Scholar 

  • Steinberg RA (1946) A ‘frenching’ response of tobacco seedlings to isoleucine. Science 103:329–330

    Article  CAS  Google Scholar 

  • Steinberg RA (1950) Accumulation of free amino acids as a chemical basis for morphological symptoms in tobacco manifesting frenching and mineral deficiency symptoms. Plant Physiol 25:279–288

    Article  CAS  Google Scholar 

  • Swart A, Kamerbeek GA, (1976) Different ethylene production in vitro by several species and formae speciales of Fusarium. Neth J Plant Pathol 82:81–84

    Article  CAS  Google Scholar 

  • Tiourebaev KS, Nelson S, Zidack NK, Kaleyva GT, Pilgeram AL, Anderson TW, Sands DC (2000) Amino acid excretion enhances virulence of bioherbicides. Proc Int Symp Biol Control Weeds 10:295–299

    Google Scholar 

  • Tiourebaev KS, Semenchenko GV, Dolgovskaya M, McCarthy MK, Anderson TW, Carsten LD, Pilgeram AL, Sands DC (2001) Biological control of infestations of ditchweed (Cannabis sativa) with Fusarium oxysporum f. sp. cannabis in Kazakhstan. Biocontrol Sci Technol 11:535–540

    Article  Google Scholar 

  • Tsavkelova EA, Klimova SY, Cherdyntseva TA, Netrusov AI (2006) Hormones and hormone-like substances of microorganisms: a review. J Appl BiochemMicrobiol 42:229–235

    CAS  Google Scholar 

  • Tuinstra MR, Soumana S, Al-Khatib K, Kapran I, Toure A, van Ast A, Bastiaans L, Ochanda NW, Salami I, Kayentai M, Dembele, S (2009) Efficacy of herbicide seed treatments for controlling Striga infestation of sorghum. Crop Sci 49:923–929

    Article  CAS  Google Scholar 

  • Venne J, Beed F, Avocanh A, Watson AK (2009) Integrating Fusarium oxysporum f. sp. strigae into cereal cropping systems in Africa. Pest Manage Sci 65:572–580

    Article  CAS  Google Scholar 

  • Vurro M, Boari A, Pilgeram AL, Sands DC (2006) Exogenous amino acids inhibit seed germination and tubercle formation by Orobanche ramosa (broomrape): potential application for management of parasitic weeds. Biol Control 36:258–265

    Article  CAS  Google Scholar 

  • Vurro M, Boari A, Evidente A, Andolfi A, Zermane N (2009) Natural metabolites for parasitic weed management. Pest Manage Sci 65:566–571

    Article  CAS  Google Scholar 

  • Yandoc-Ables CB, Rosskopf EN, Charudattan R (2006) Plant pathogens at work: progress and possibilities for weed biocontrol. Part 1: classical vs. bioherbicidal approach. APS feature story. http://www.apsnet.org/online/feature/weed1 Accessed 30 August 2006

  • Yoneyama K, Ogasawara M, Takeuchi Y, Konnai M, Sugimoto Y, Seto H, Yoshido S (1998) Effect of jasmonates and related compounds on seed germination of Orobanche minor Smith and Striga hermonthica (Del.) Benth. Biosci Biotechnol Biochem 62:1448–1450

    Article  CAS  Google Scholar 

  • Yonli D, Traore H, Hess DE, Abbasher AA, Boussim IJ (2004) Effect of growth medium and method of application of Fusarium oxysporum on infestation of sorghum by Striga hermonthica in Burkina Faso. Biocontrol Sci Technol 14:417–421

    Article  Google Scholar 

  • Zahran E, Kohlschmid E, Sauerborn J, Abbasher AA, Muller-Stover D (2008a) Does an application as seed coating stabilize the efficacy of biocontrol agents against Striga hermonthica under field conditions? J Plant Dis Prot Spec Iss 21:467–471

    Google Scholar 

  • Zahran E, Sauerborn J, Elmagid AA, Abbasher AA, Muller-Stover D (2008b) Granular formulations and seed coating: delivery options for two fungal biological control agents of Striga hermonthica. J Plant Dis Prot 115:178–185

    CAS  Google Scholar 

  • Zahran E, Sauerborn J, Abbasher AA, Ahmed EA, Mohukker RI, Karlovsky P, Mohamed EA, Muller-Stover D (2008c) “Pesta” and alginate delivery systems of Fusarium spp. for biological control of Striga hermonthica (Del.) Benth. under Sudanese field conditions. Biol Control 44:160–168

    Article  Google Scholar 

  • Zhou L, Bailey KL, Derby J (2004) Plant colonization and environmental fate of the biocontrol fungus. Biol Control 30:634–644

    Article  Google Scholar 

  • Zhou L, Bailey KL, Chen CY, Keri M (2005) Molecular and genetic analyses of geographic variation in isolates of Phoma macrostoma used for biological weed control. Mycologia 97:612–620

    Article  CAS  Google Scholar 

  • Zonno MC, Vurro M (1999) Effect of fungal toxins on germination of Striga hermonthica seeds. Weed Res 39:15–20

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice L. Pilgeram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pilgeram, A.L., Sands, D.C. (2011). Bioherbicides. In: Hofrichter, M. (eds) Industrial Applications. The Mycota, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11458-8_19

Download citation

Publish with us

Policies and ethics