Skip to main content

Biosorption of Metals

  • Chapter
  • First Online:
  • 3699 Accesses

Part of the book series: The Mycota ((MYCOTA,volume 10))

Abstract

Biosorption of metals from solution by fungal biomass is an alternative to conventional techniques for metal removal. The biomass can be produced for biosorption or be a waste product. The structures that bind heavy metals, the chemical nature of the binding groups at the cell wall and the uptake of metals into the cell are discussed. Data on reaction kinetics and thermodynamics of the sorption process are reviewed. The technology of biosorption and experiences with a pretreatment of the biomass to improve biosorption are further topics. Examples from the literature of heavy metal removal by fungal biomass are given.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akar T, Tunali S (2006) Biosorption characteristics of Aspergillus flavus biomass for removal of Pb(II) and Cu(II) ions from an aqueous solution. Bioresour Technol 97:1780–1787

    CAS  Google Scholar 

  • Akar T, Tunali S, Cabuk A (2007) Study on the characterization of lead (II) biosorption by fungus Aspergillus parasiticus. Appl Biochem Biotechnol 136:389–405

    CAS  Google Scholar 

  • Akhtar N, Sastry S, Mohan M (1995) Biosorption of silver anions by processed Aspergillus niger biomass. Biotechnol Lett 17:551–556

    Google Scholar 

  • Akthar N, Sastry S, Mohan M (1996) Mechanism of metal ion biosorption by fungal biomass. Biometals 9:21–28

    CAS  Google Scholar 

  • Akhtar K, Akhtar MW, Khalid AM (2008) Removal and recovery of zirconium from ist aqueous solution by Candida tropicalis. J Hazard Mat 156:108–117

    CAS  Google Scholar 

  • Akhtar K, Khalid AM, Akhtar MW, Ghauri MA (2009) Removal and recovery of uranium from aqueous solutions by Ca-alginate immobilized Trichoderma harzianum. Bioresour Technol 100:4551–4558

    CAS  Google Scholar 

  • Akira N, Takashi S (1993) Accumulation of uranium by basidiomycetes. Appl Microbiol Biotechnol 38:574–578

    Google Scholar 

  • Aksu Z, Balibek E (2007) Chromium(VI) biosorption by dried Rhizopus arrhizus: effect of salt (NaCl) concentration on equilibrium and kinetic parameters. J Hazard Mat 145:210–220

    CAS  Google Scholar 

  • Aksu Z, Calik A, Dursun AY, Demircan Z (1999) Biosorption of iron(III)-cyanide complex anions to Rhizopus arrhizus: application of adsorption isotherms. Process Biochem 34:483–491

    CAS  Google Scholar 

  • Al-Asheh S, Duvnjak Z (1995) Adsorption of copper and chromium by Aspergillus carbonarius. Biotechnol Prog 11:638–642

    CAS  Google Scholar 

  • Aloysius R, Karim MIA, Ariff AB (1999) The mechanism of cadmium removal from aqueous solution by nonmetabolizing free and immobilized live biomass of Rhizopus oligosporus. World J Microbiol Biotechnol 15:571–578

    CAS  Google Scholar 

  • Ariff AB, Mel M, Hasan MA, Karim MIA (1999) The kinetics and mechanism of lead (II) biosorption of powderized Rhizopus oligosporus. World J Microbiol Biotechnol 15:291–298

    Google Scholar 

  • Arika MY, Bayramoglu G, Yilmaz M, Bektaay S, Genas O (2004) Biosorption of Hg2+, Cd2+ and Zn2+ by Ca-alginate and immobilized wood-rotting fungus Funalia troglii. J Hazard Mat 109:191–199

    Google Scholar 

  • Ashkenazy R, Gottlieb L, Yannai S (1997) Characterization of acetone-washed yeast biomass functional groups incvolved in lead biosorption. Biotechnol Bioeng 55:1–10

    CAS  Google Scholar 

  • Atkinson BW, Bux F, Kasan HC (1998) Considerations for application of biosorption technology to remediate metal-contaminated industrial effluents. Water S Afr 24:129–135

    CAS  Google Scholar 

  • Avery SV, Tobin JM (1992) Mechanisms of strontium uptake by laboratory and brewing strains of Saccharomyces cerevisiae. Appl Environ Microbiol 58:3883–3889

    CAS  Google Scholar 

  • Bai RS, Abraham TE (1998) Studies on biosorption of chromium (VI) by dead fungal biomass. J Sci Indust Res 57:821–824

    CAS  Google Scholar 

  • Bai RS, Abraham TE (2001) Biosorption of Cr(VI) from aqueous solution by Rhizopus nigricans. Bioresour Technol 79:73–81

    Google Scholar 

  • Bakkaloglu I, Butter TJ, Evinson LM, Holland FS, Hancock IC (1998) Screening of various types biomass for removal and recovery of heavy metals (ZN, Cu, NI) by biosorption, sedimentation and desorption. Water Sci Technol 38:269–277

    CAS  Google Scholar 

  • Bayramoaylu G, Bektaay S, Arica MY (2003) Biosorption of heavy metal ions on immobilized white-rot fungus Trametes versicolor. J Hazard Mat 101:285–300

    Google Scholar 

  • Baysal Z, Cinar E, Bulut Y, Alkan H, Dogru M (2009) Equilibrium and thermodynamic studies on biosorption of Pb (II) onto Candida albicans biomass. J Hazard Mat 161:62–67

    CAS  Google Scholar 

  • Bellion M, Coubot M, Jacob C, Blaudez D, Chalot M (2006) Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microb Lett 254:173–181

    CAS  Google Scholar 

  • Ben Omar N, Larbi Merroun M, Arias Penalver JM, Gonzalez Munoz MT (1997) Comparative heavy metal biosorption study of brewery yeast and Myxococcus xanthus biomass. Chemosphere 35:2277–2283

    CAS  Google Scholar 

  • Bengtsson L, Johansson B, Hackett TJ, McHale L, McHale AP (1995) Studies on the biosorption of uranium by Talaromyces emersonii CBS814.70 biomass. Appl Microbiol Biotechnol 42:807–811

    CAS  Google Scholar 

  • Bhainsa KC, D’Souza SF (1999) Biosorption of uranium(VI) by Aspergillus fumigatus. Biotechnol Tech 13:695–699

    CAS  Google Scholar 

  • Bhainsa KC, D’Souza SF (2009) Thorium biosorption by Aspergillus fumigatus, a filamentous fungal biomass. J Hazard Mat 165:670–676

    CAS  Google Scholar 

  • Bhainsa KC, D’Souza SF (2008) Removal of copper ions by the filamentous fungus, Rhizopus oryzae from aqueous solution. Bioresour Technol 99:3829–3835

    CAS  Google Scholar 

  • Bishnoi NR, Kumar R, Bishnoi K (2007) Biosorption of Cr(VI) with Trichoderma viride immobilized fungal biomass and cell free Ca-alginate beads. Ind J Exp Biol 45:657–664

    CAS  Google Scholar 

  • Blackwell KJ, Singleton I, Tobin M (1995) Metal cation uptake by yeast: a review. Appl Microbiol Biotechnol 43:579–584

    CAS  Google Scholar 

  • Brady D, Duncan JR (1994a) Cation loss during accumulation of heavy metal cations by Saccharomyces cerevisiae. Biotechnol Lett 16:543–548

    CAS  Google Scholar 

  • Brady D, Duncan JR (1994b) Binding of heavy metals by the cell walls of Saccharomyces cerevisiae. Enzyme Microb Technol 16:633–638

    CAS  Google Scholar 

  • Brady D, Duncan JR (1994c) Bioaccumulation of metal cations by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 41:149–154

    CAS  Google Scholar 

  • Brady D, Rose PD, Duncan JR (1994a) The use of hollow fiber cross-flow microfiltration in bioaccumulation and continuous removal of heavy metals from solution by Saccharomyces cerevisiae. Biotechnol Bioeng 44:1362–1366

    CAS  Google Scholar 

  • Brady D, Stoll AD, Starke L, Duncan JR (1994b) Chemical and enzymatic extraction of heavy metal binding polymers from isolated cell walls of Saccharomyces cerevisiae. Biotechnol Bioeng 44:297–302

    CAS  Google Scholar 

  • Brady JM, Tobin JT, Roux JC (1999) Continuous fixed bed biosorption of Cu2+ ions: application of a simple two parameter mathematical model. J Chem Technol Biotechnol 74:71–77

    CAS  Google Scholar 

  • Breierova E, Vajczikova I, Sasinkova V, Stratilova E, Fisera I, Gregor T, Sajbidor J (2002) Biosorption of cadmium ions by different yeast species. Z Naturforsch C 57:634–639

    CAS  Google Scholar 

  • Bustard M, McHale AP (1997) Biosorption of uranium by cross-linked and alginate immobilized residual biomass from distillery spent wash. Bioprocess Eng 17:127–130

    CAS  Google Scholar 

  • Bustard M, McHale AP (1998) Biosorption of heavy metals by distillery-derived biomass. Bioprocess Eng 19:351–353

    CAS  Google Scholar 

  • Bustard M, Donnellan N, Rollan A, McHale AP (1997) Studies on the biosorption of uranium by a thermotolerant, ethanol-producing strain of Kluyveromyces marxianus. Bioprocess Eng 17:45–50

    CAS  Google Scholar 

  • Bustard M, Rollan A, McHale AP (1998) The effect of pulse voltage and capacitance on biosorption of uranium by biomass derived from whiskey distillery spent wash. Bioprocess Eng 18:59–62

    CAS  Google Scholar 

  • Castro F, Viedma P, Cotoras D (1992) Biomass of Rhizopus oligosporus as an adsorbent for metal ions. Microbiologica 8:94–105

    CAS  Google Scholar 

  • Cervantes C, Gutierrez-Corona F (1994) Copper resistance mechanisms in bacteria and fungi. FEMS Microbiol Rev 14:121–138

    CAS  Google Scholar 

  • Chen C, Wang J (2007a) Influence of metal ionic characteristics on their biosorption capacity by Sacharomyces cerevisiae. Appl Microbiol Biotechnol 74:911–917

    CAS  Google Scholar 

  • Chen C, Wang J (2007b) Characteristics of Zn2+ biosorption by Saccharomyces cerevisiae. Biomed Environ Sci 20:478–482

    CAS  Google Scholar 

  • Chhikara S, Dhankhar R (2008) Biosorption of CR (VI) ions from electroplating industrial effluent using immobilized Aspergillus niger biomass. J Environ Biol 29:773–778

    CAS  Google Scholar 

  • Cho DK, Kim EY (2003) Characteristic of Pb2+ biosorption from aqueous solution by Rhodotorula glutinis. Bioprocess Biosyst Eng 25:271–277

    CAS  Google Scholar 

  • Cihangir N, Saglam N (1999) Removal of cadmium by Pleurotus sajor-caju basidiomycetes. Acta Biotechnol 19:171–177

    CAS  Google Scholar 

  • Courbot M, Diez L, Ruotolo R, Chalot M, Leroy P (2004) Cadmium-responsive thiols in the ectomycorrhizal fungus Paxillus involutus. Appl Environ Microbiol 70:7413–7417

    CAS  Google Scholar 

  • Del Val C, Barea JM, Azcon-Aguilar C (1999) Diversity of arbuscular mycorrhizal fungus populations in heavy-metal-contaminated soils. Appl Environ Microbiol 65:718–723

    CAS  Google Scholar 

  • Delgado A, Anselmo AM, Novais JM (1998) Heavy metal biosorption by dried powdered mycelium of Fusarium flocciferum. Water Environ Res 70:370–375

    CAS  Google Scholar 

  • Deng S, Ting YP (2005) Polyethylenimine-modfied fungal biomass as a high capacity biosorbent for Cr(VI) anions: sorption capacity and uptake mechanisms. Environ Sci Technol 39:8490–8496

    CAS  Google Scholar 

  • Dey S, Rao PRN, Bhattacharyya BC, Bandyopadhyay M (1997) Sorption of heavy metals by four basidiomycetous fungi. Bioprocess Eng 12:273–277

    Google Scholar 

  • Dhami PS, Gopalakrishnan V, Kannan R, Ramanujam A, Salvi N (1998) Biosorption of radionuclides by Rhizopus arrhizus. Biotechnol Lett 20:225–228

    CAS  Google Scholar 

  • Dhawale SS, Lane AC, Dhawale W (1996) Effects of mercury on the white rot fungus Phanerochaete chrysosporium. Bull Environ Contam Toxicol 56:825–832

    CAS  Google Scholar 

  • Donnellan N, Rollan A, McHale L, McHale AP (1995) The effect of electric field stimulation on the biosorption of uranium by non-living biomass derived from Kluyveromyves marxianus IMB3. Biotechnol Lett 17:439–442

    CAS  Google Scholar 

  • Eide DJ (1998) The molecular biology of metal ion transport in Saccharomyces cerevisiae. Annu Rev Nutr 18:441–469

    CAS  Google Scholar 

  • Ertugay N, Bayhan YK (2008) Biosorption of Cr(VI) from aqueous solutions by biomass of Agaricus biporus. J Hazard Mat 154:432–439

    CAS  Google Scholar 

  • Falih AM (1997) Influence of heavy metals toxicity on the growth of Phanerochaete chrysosporium. Bioresour Technol 60:87–90

    CAS  Google Scholar 

  • Fourest E, Roux JC (1992) Heavy metal biosorption by fungal mycelial by-products: mechanisms and influence of pH. Appl Microbiol Biotechnol 37:399–403

    CAS  Google Scholar 

  • Fourest E, Canal C, Roux JC (1994) Improvement of heavy metal biosorption by mycelial dead biomasses (Rhizopus arrhizus, Mucor miehei and Penicillium chrysogenum): pH control and cationic activation. FEMS Microbiol Rev 14:325–332

    CAS  Google Scholar 

  • Gabriel J, Mokrejs M, Bily J, Rychlovsky P (1994) Accumulation of heavy metals by some wood-rotting fungi. Folia Microbiol 39:115–118

    CAS  Google Scholar 

  • Gabriel J, Kovronova O, Rychlovsky P, Krenzelok M (1996a) Accumulation and effect of cadmium in the wood-rotting basidiomycete Daedalea quercina. Bull Environ Toxicol 57:383–390

    CAS  Google Scholar 

  • Gabriel J, Vosahlo J, Baldrian P (1996b) Biosorption of cadmium to mycelial pellets of wood-rotting fungi. Biotechnol Tech 10:345–348

    CAS  Google Scholar 

  • Gabriel J, Baldrian P, Rychlovsky P, Krenzelok M (1997) Heavy metal content in wood-decaying fungi collected in Prague and in the national park SUMAVA in the Czech republic. Bull Environ Toxicol 59:595–602

    CAS  Google Scholar 

  • Gadd GM (1993) Tansley Review No. 47 Interactions of fungi with toxic metals. New Phytol 124:25–60

    CAS  Google Scholar 

  • Gadd GM, White C (1993) Microbial treatment of metal pollution-a working biotechnology? Trends Biotechnol 11:353–359

    CAS  Google Scholar 

  • Galli U, Schüepp H, Brunold C (1994) Heavy metal binding by mycorrhizal fungi. Physiol Plant 92:364–368

    CAS  Google Scholar 

  • Galli U, Schüepp H, Brunold C (1995) Thiols of Cu-treated maize plants inoculated with the arbuscular-mycorrhizal fungus Glomus intraradices. Physiol Plant 94:247–253

    CAS  Google Scholar 

  • Gomalero E, Lingua G, Berto G, Glick BR (2009) Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can J Microbiol 55:501–514

    Google Scholar 

  • Gomes NCM, Linardi VR (1996) Removal of gold silver and copper by living and nonliving fungi from leach liquor obtained from the gold mining industry. Revista de Microbiologia 27:218–222

    CAS  Google Scholar 

  • Gopal M, Pakshirajan K, Swaminathan T (2002) Heavy metal removal by biosorption using Phanerochaete chrysosporium. Appl Biochem Biotechnol 102/103:227–237

    Google Scholar 

  • Gorovoi LF, Kosyakov VN (1996) Cell wall of fungi:optimal structure for biosorption. Biopolymera i Kletka 12:49–60

    Google Scholar 

  • Gray SN (1998) Fungi as potential bioremediation agents in soil contaminated with heavy or radioactive metals. Biochem Soc Trans 26:666–670

    CAS  Google Scholar 

  • Guibal E, Roulph C, Le Cloirec P (1995) Infrared spectroscopic study of uranyl biosorption by fungal biomass and materials of biological origin. Environ Sci Technol 29:2496–2503

    CAS  Google Scholar 

  • Han R, Li H, Li Y, Zhang J, Xiao H, Shi J (2006) Biosorption of copper and lead ions by waste beer yeast. J Hazard Mat 137:1569–1576

    CAS  Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146

    CAS  Google Scholar 

  • Holan ZR, Volesky B (1995) Accumulation of cadmium, lead and nickel by fungal and wood biosorbents. Appl Biochem Biotechnol 53:133–146

    CAS  Google Scholar 

  • Huang C, Huang CP (1996) Application of Aspergillus oryzae and Rhizopus oryzae for Cu(II) removal. Water Res 30:1985–1990

    CAS  Google Scholar 

  • Jentschke G, Marschner P, Vodnik D, Marth C, Bredemeier M, Rapp C, Eberhard F, Gogala N, Godbold DL (1998) Lead uptake by Picea abies seedlings: effects of nitrogen source and mycorrhizas. J Plant Physiol 153:97–104

    CAS  Google Scholar 

  • Junghans K, Straube G (1991) Biosorption of copper by yeasts. Biol Met 4:233–237

    CAS  Google Scholar 

  • Kambe-Honjoh H, Sugarawa A Yoda K, Kitamoto K, Yamasaki M (1997) Isolation and characterization of nickel-accumulating yeasts. Appl Microbiol Biotechnol 48:373–378

    CAS  Google Scholar 

  • Kapoor A, Viaraghavan T (1997) Heavy metal biosorption sites in Aspergillus niger. Bioresour Technol 61:221–227

    CAS  Google Scholar 

  • Kapoor A, Viaraghavan T (1998a) Biosorption of heavy metals of Aspergillus niger: effect on pretreatment. Bioresour Technol 63:109–113

    CAS  Google Scholar 

  • Kapoor A, Viaraghavan T (1998b) Removal of heavy metals from aqueous solutions using immobilized fungal biomass in continuous mode. Water Res 32:1968–1977

    CAS  Google Scholar 

  • Kapoor A, Viaraghavan T (1999) Removal of heavy metals using the fungus Aspergillus niger. Bioresour Technol 70:95–104

    CAS  Google Scholar 

  • Karna RR, Sajani LS, Mohan PM (1996) Bioaccumulation and biosorption of Co2+ by Neurospora crassa. Biotechnol Lett 18:1205–1208

    CAS  Google Scholar 

  • Korenevskii AA, Khamidova K, Avakyan ZA, Karavaiko GI (1999) Silver biosorption by micromycetes. Microbiology 68:139–145

    CAS  Google Scholar 

  • Koronelli TV, Yuferova SG, Udel´nova TM, Komerova TI (1999) Binding of Cu2+ and Sr2+ by the micromycete Mucor dimorphosporus, a degrader of fatty substances. Prikl Biochem Microbiol 35:342–344

    CAS  Google Scholar 

  • Krantz-Rülcker C, Frändberg E, Schnürer J (1995) Metal loading and enzymatic degradation of fungal cell walls and chitin. Biometals 8:12–18

    Google Scholar 

  • Kratochvil D, Volesky B (1998) Advances in the biosorption of heavy metals. Trends Biochem 16:291–300

    CAS  Google Scholar 

  • Krauter P, Martinelli R, Williams K, Martins S (1996) Removal of Cr(VI) from ground water by Saccharomyces cerevisiae. Biodegradation 7:277–286

    CAS  Google Scholar 

  • Krznaric E, Verbruggen N, Wevers JH, Carleer R, Vangronsveld J, Colpaert JV (2009) Cd-tolerant Suillus luteus: a fungal insurance for pines exposed to Cd. Environ Pollut 157:1581–1588

    CAS  Google Scholar 

  • Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: Physiological, ecological and applied aspects. Mycorrhiza 7:139–153

    CAS  Google Scholar 

  • Li L, Kaplan J (1998) Defects in the yeast high affinity iron transport system result in increased metal sensitivity because of the increased expression of transporters with a broad transition metal specificity. J Biol Chem 273:22181–22187

    CAS  Google Scholar 

  • Li XM, Liao DX, Xu XQ, Yang Q, Zeng GM, Zheng W Guo L (2008) Kinetic studies for the biosorption of lead and copper ions by Penicillium simplicissimum immobilized within a loofa sponge. J Hazard Mat 159:610–615

    CAS  Google Scholar 

  • Li Z, Yuan H (2006) Characterization of cadmium removal by Rhodotorula sp. Y11. Appl Microbiol Biotechnol 73:458–463

    CAS  Google Scholar 

  • Li ZS, Lu YP, Zhen RG, Szcypka M, Thiele DJ, Rea PA (1997) A new pathway for vacuolar sequestration in Saccharomyces cerevisiae: YCF1-catalysed transport of (bisglutathionato)cadmium. Proc Natl Acad Sci USA 94:42–47

    CAS  Google Scholar 

  • Liang CC, Xiao YP, Liu MJ, Zhang HB, Zhao ZW (2009) Effects of inoculation with arbuscular mycorrhizal fungi on maize grown in multi-metal contaminated soils. Int J Phytoremediation 11:692–703

    CAS  Google Scholar 

  • Lilly WW, Wallweber GJ, Lukefahr TA (1992) Cadmium adsorption and its effects on growth and mycelial morphology of the basidiomycete fungus, Schizophyllum commune. Microbios 72:227–237

    CAS  Google Scholar 

  • Loukidou MX, Matis KA, Zouboulis AI, Liakopoulou-Kyriakidou M (2003) Removal of As(V) from wastewaters by chemically modified fungal biomass. Water Res 37:4544–4552

    CAS  Google Scholar 

  • Lovely DR, Coates JD (1997) Bioremediation of metal contamination. Curr Opin Biotechnol 8:285–289

    Google Scholar 

  • Lu Y, Wilkins E (1996) Heavy metal removal by caustic-treated yeast immobilized in alginate. J Hazard Mat 49:165–179

    CAS  Google Scholar 

  • Luef E, Prey T, Kubicek CP (1991) Biosorption of zinc by fungal mycelial wastes. Appl Microbiol Biotechnol 34:688–692

    CAS  Google Scholar 

  • Madrid Y, Camara C (1997) Biological substrates for metal preconcentration and speciation. Trends Anal Chem 16:36–44

    CAS  Google Scholar 

  • Magyarosy A, Laidlaw RD, Kilaas R, Echer C, Clark DS, Keasling JD (2002) Nickel accumulation and nickel oxalate precipitation by Aspergillus niger. Appl Microbiol Biotechnol 59:382–388

    CAS  Google Scholar 

  • Matis KA, Zouboulis AI, Grigoriadou AA, Lazaridis NK, Ekateriniadou AA (1996) Metal biosorption–flotation. Application to cadmium removal. Appl Microbiol Biotechnol 45:569–573

    CAS  Google Scholar 

  • Melgar MJ, Alonso J, Garcia MA (2007) Removal of toxic metals by fungal biomass of Agaricus macrosporus. Sci Total Environ 385:12–19

    CAS  Google Scholar 

  • Mendil D, Tuzen M, Soylak M (2008) A biosorption system for metal ions on Penicillium italicum-loaded on Sepabeads SP 70 prior to flame atomic absorption spectrometric determinations. J Hazard Mat 152:1171–1178

    CAS  Google Scholar 

  • Merrin JS, Sheela R, Saswathi N, Prakasham RS (1998) Biosorption of chromium VI using Rhizopus arrhizus. Ind J Exp Biol 36:1052–1055

    CAS  Google Scholar 

  • Meyer A, Wallis FM (1997) The use of Aspergillus niger (strain 4) biomass for lead uptake from aqueous systems. Water SA 23:187–192

    CAS  Google Scholar 

  • Michelot D, Siobud E, Dore JC, Viel C Poirier F (1998) Update on metal content profiles in mushrooms–toxicological implications and tentative approach to the mechanisms of bioaccumulation. Toxicon 36:1997–2012

    CAS  Google Scholar 

  • Mogollon L, Rodriguez R, Larrota W, Ramirez N, Torres R (1998) Biosorption of nickel using filamentous fungi. Appl Biochem Biotechnol 70/72:593–601

    Google Scholar 

  • Mukhopadhyay M, Noronha SB, Suraishkumar GK (2007) Kinetic modelling for the biosorption of copper by pretreated Aspergillus niger biomass. Bioresour Technol 98:1781–1787

    CAS  Google Scholar 

  • Mullen MD, Wolf DC, Beveridge TJ, Bailey GW (1992) Sorption of heavy metals by the soil fungi Aspergillus niger and Mucor rouxii. Soil Biol Biochem 24:129–135

    CAS  Google Scholar 

  • Muraledharand TR, Iyengar L, Venkobachar C (1995) Screening of tropical wood-rotting mushrooms for copper biosorption. Appl Environ Microbiol 61:3507–3508

    Google Scholar 

  • Murugesan GS, Sathishkumar M, Swaminathan K (2006) Arsenic removal from groundwater by pretreated waste tea fungal biomass. Bioresour Technol 97:483–487

    CAS  Google Scholar 

  • Naja G, Mustin C, Berthelin J, Volesky B (2005) Lead biosorption study with Rhizopus arrhizus using a metal-based titration technique. J Colloid Interface Sci 292:537–543

    CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    CAS  Google Scholar 

  • Niu H, Xu XS, Wang JH (1993) Removal of lead from aqueous solutions by Penicillium biomass. Biotechnol Bioeng 42:785–787

    CAS  Google Scholar 

  • Omar NB, Merroun ML, Gonzalez-Munoz MT, Arias JM (1996) Brewery yeast as a biosorbent for uranium. J Appl Bacteriol 81:283–287

    CAS  Google Scholar 

  • Ono BI, Ohue H, Ishihara F (1988) Role of cell wall in Saccharomyces cerevisiae mutants resistant to Hg2+. J Bacteriol 170:5877–5882

    CAS  Google Scholar 

  • Ozer A, Ozer D (2003) Comparative study of the biosorption of Pb(II), Ni(II), and Cr(VI) ions onto S. cerevisiae: determination of biosorpion heats. J Hazard Mat 100:219–229

    CAS  Google Scholar 

  • Ozsoy HD, Kumbur H, Saha B, van Leeuwen JH (2008) Use of Rhizopus oligosporus produced from food processing wastewater as a biosorbent for Cu(II) ions removal from the aqueous solutions. Bioresour Technol 99:4943–4948

    CAS  Google Scholar 

  • Pakshirajan K, Swaminathan T (2009) Biosorption of copper and cadmium in packed bed colums with live immobilized fungal biomass of Phanerochaete chrysoporium. Appl Biochem Biotechnol 157:159–173

    CAS  Google Scholar 

  • Parvathi K, Nareshkumar R, Nagendran R (2007) Manganese biosorption sites of Saccharomyces cerevisiae. Environ Technol 28:779–784

    CAS  Google Scholar 

  • Pena MMO, Koch KA, Thiele DJ (1998) Dynamic regulation of copper uotake and detoxification genes in Saccharomyces cerevisiae. Mol Cell Biol 18:2514–2523

    CAS  Google Scholar 

  • Perez-Corona T, Madrid Y, Camara C (1997) Evaluation of selective uptake of selenium (Se(IV) and Se(VI)) and antimony (Sb(III) and Sb(V)) species by baker´s yeast cells (Saccharomyces cerevisiae). Anal Chim Acta 345:249–255

    CAS  Google Scholar 

  • Pethkar AV, Kulkarni SK, Paknikar KM (2001) Comparative studies on metal biosorption by two strains of Cladsporium cladosporioides. Bioresour Technol 80:211–215

    CAS  Google Scholar 

  • Pillichshammer M, Pümpel T, Pöder R, Eller K, Klima J, Schinner F (1995) Biosorption of chromium to fungi. BioMetals 8:117–121

    CAS  Google Scholar 

  • Plaza G, Lukasik W, Ulfig K (1996) Sorption of cadmium by filamentous soil fungi. Acta Microbiol Pol 45:193–201

    CAS  Google Scholar 

  • Prakasham RS, Merrie JS, Sheela R, Saswathi N, Ramakrishna SV (1999) Biosorption of chromiumVI by free and immobilized Rhizopus arrhizus. Environ Pollut 104:421–427

    CAS  Google Scholar 

  • Prigione V, Zerlottin M, Refosco D, Tigini V, Anastasi A, Varese GC (2009) Chromium removal from a real tanning effluent by autochthonous and allochthonous fungi. Bioresour Technol 100:2770–2776

    CAS  Google Scholar 

  • Puranik PR, Paknikar KM (1997) Biosorption of lead and zinc from solutions using Streptoverticillium cinnamoneum waste biomass. J Biotechnol 55:113–124

    CAS  Google Scholar 

  • Rama Rao VSKV, Wilson CH, MOhan PM (1997) Zinc resistance in Neurospora crassa. BioMetals 10:147–156

    Google Scholar 

  • Redon PO, Beguiristain T, Leyval C (2009) Differential effects of AM fungal isolates on Medicago trunculata growth and metal uptake in a multimetallic (Cd, Zn, Pb) contaminated agricultural soil. Mycorrhiza 19:187–195

    CAS  Google Scholar 

  • Ricken B, Hoefner W (1996) Effect of arbuscular mycorrhizal fungi (AMF) on heavy metal tolerance of alfalfa (Medicago sativa L. ) and oat (Avena sativa L.) on a sewage-sludge treated soil. Z Pflanzener Bodenk 159:189–194

    CAS  Google Scholar 

  • Rivvera-Becerril F, Calantzis C, Turnau K, Caussanel JP, Belimov AA, Gianinazzi S, Strasser RJ, Gianinazzi-Pearson V (2002) Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes. J Exp Bot 53:1177–1185

    Google Scholar 

  • Rizzo DM, Blanchette RA, Palmer MA (1992) Biosorption of metal ions by Armillaria rhizomorphs. Can J Bot 70:1515–1520

    CAS  Google Scholar 

  • Riordan C, McHale AP (1998) Removal of lead from solution using non-living residual brewery yeast. Bioprocess Eng 19:277–280

    CAS  Google Scholar 

  • Riordan C, Bustard M, Putt R, McHale AP (1997) Removal of uranium from solution using residual brewery yeast: Combined biosorption and precipitation. Biotechnol Lett 19:385–387

    CAS  Google Scholar 

  • Sag Y, Kaya A, Kutsal T (1998a) The simultaneuos biosorption of Cu(II) and Zn on Rhizopus arrhizus: application of the adsorption models. Hydrometallurgy 50:297–314

    CAS  Google Scholar 

  • Sag Y, Acikel U, Akzu Z, Kutsal T (1998b) Competitive biosorption of chromium(VI), iron(III) and copper(II) ions from binary metal mixtures by R. arrhizus and C. vulgaris. Turk J Eng Environ Sci 22:145–154

    CAS  Google Scholar 

  • Saglam N, Say R, Denizli A, Patir S, Arica MY (1999) Biosorption of inorganic mercury and alkylmercury species on to Phanerochaete chrysosporium mycelium. Process Biochem 34:725–730

    CAS  Google Scholar 

  • Sajani LS, Mohan PM (1997) Characterisation of a cobalt-resistant mutant of Neurospora crassa with transport block. BioMetals 10:175–184

    CAS  Google Scholar 

  • Sajani LS, Mohan PM (1998) Cobalt resistance in Neurospora crassa: Overproduction of a cobaltprotein in a resistant strain. BioMetals 11:33–40

    CAS  Google Scholar 

  • Sanna G, Maddau L, Franceschini A, Melis P (1997) Bioaccumulation and biosorption of heavy metals by Trichoderman viride. Micol Ital 26:63–72

    Google Scholar 

  • Sari A, Tuzen M (2009) Biosorption of AS(III) and As(VI) from aqueous solution by macrofungus (Inonotus hispidus) biomass: equilibrium and kinetic studies. J Hazard Mat 164:1372–1378

    CAS  Google Scholar 

  • Sarret G, Manceau A, Spadini L, Roux JC, Hazemann JL, Soldo Y, Eybert-Berard L, Menthonnex JJ (1999) Structural determination of Pb binding sites in Penicillium chrysogenum cell walls by EXAFS spectroscopy and solution chemistry. J Synchroton Radiat 6:414–416

    CAS  Google Scholar 

  • Satufoka H, Amano S, Atomi H, Takagi M, Hirata K, Miyamoto K, Imanaka T (1999) Rapid method for detection and detoxification of heavy metal ions in water environments using phytochelatin. J Biosci Bioeng 88:287–292

    Google Scholar 

  • Say R, Denizli A, Arica MY (2001) Biosorption of cadmium(II), lead(II) and coper(II) with the filamentous fungus Phanerochaete chrysosporium. Bioresour Technol 76:67–70

    CAS  Google Scholar 

  • Sayer JA, Kierans M, Gadd GM (1997) Solubilisation of some naturally occuring metal-bearing minerals, limescale and lead phosphate by Aspergillus niger. FEMS Microbiol Lett 154:29–35

    CAS  Google Scholar 

  • Seki H, Suzuki A, Maruyama H (2005) Biosorption of chromium(VI) and arsenic(V) onto methylated yeast biomass. J Colloid Interface Sci 281:261–266

    CAS  Google Scholar 

  • Shetty KG, Hetrick BAD, Figge DAH, Schwab AP (1994) Effects of mycorrhizae and other soil microbes on revegetation of heavy metal contaminated mine spoil. Environ Pollut 86:181–188

    CAS  Google Scholar 

  • Simmons P, Singleton I (1996) A method to increase silver biosorption by an industrial strain of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 45:278–285

    CAS  Google Scholar 

  • Simmons P, Tobin JM, Singleton I (1995) Considerations on the use of commercially available yeast biomass for the treatment of metal-containing effluents. J Indust Microbiol 14:240–246

    CAS  Google Scholar 

  • Sing C, Yu J (1998) Copper adsorption and removal from water by living mycelium of white-rot fungus Phanerochaete chrysosporium. Water Res 32:2746–2752

    CAS  Google Scholar 

  • Stoll A, Duncan JR Implementation of a continuous-flow stirred bioreactor system in the bioremediation of heavy metals from industrial waste water. Environ Pollut 97:247–251

    Google Scholar 

  • Suh JH, Yun JW, Kim DS (1999a) Effect of pH on pB2+ accumulation in Saccharomyces cerevisiae and Aureobasidium pullulans. Bioprocess Eng 20:471–474

    CAS  Google Scholar 

  • Suh JH, Yun JW, Kim DS (1999b) Effect of extracellular polymeric substances (EPS) on Pb2+ accumulation by Aureobasidium pullulans. Bioprocess Eng 21:1–4

    CAS  Google Scholar 

  • Tam PCF (1995) Heavy metal tolerance by ectomycorrhizal fungi and metal amelioration by Pisolithus tinctorius. Mycorrhiza 5:181–187

    CAS  Google Scholar 

  • Tobin JM, Roux JC (1998) Mucor biosorbent for chromium removal from tanning effluent. Water Res 32:1407–1416

    CAS  Google Scholar 

  • Tsekova K, Ianis M, Dencheva V, Ganeva S (2007) Biosorption of binary mixtures of copper and cobalt by Penicilium brevicompactum. Z Naturforsch C62:261–264

    Google Scholar 

  • Tsezos M, Georgousis Z, Remoudaki E (1997) Mechanism of aluminium interference on uranium biosorption by Rhizopus arrhizus. Biotechnol Bioeng 55:16–27

    CAS  Google Scholar 

  • Tunali S, Akar T (2006) Zn(II) biosorption properties of Botrytis cinera biomass. J Hazard Mat 131:137–145

    CAS  Google Scholar 

  • Vieira RH, Volesky B (2000) Biosorption: a solution to pollution? Int Microbiol 3:17–24

    CAS  Google Scholar 

  • Volesky B (1990) Biosorption by fungal biomass. In: Volesky B (ed) Biosorption of heavy metals. CRC, Boca Raton, pp 139–172

    Google Scholar 

  • Volesky B (1994) Advances in biosorption of metals: Selection of biomass types. FEMS Microbiol Rev 14:291–302

    CAS  Google Scholar 

  • Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250

    CAS  Google Scholar 

  • Volesky B, May-Phillips HA (1995) Biosorption of heavy metals by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 42:797–806

    CAS  Google Scholar 

  • Volesky B, May H, Holan ZR (1992) Cadmium biosorption by Saccharomyces cerevisiae. Biotechnol Bioeng 41:826–829

    Google Scholar 

  • Wales DS, Sagar BF (1990) Recovery of metal ions by microfungal filters. J Chem Technol Biotechnol 49:345–355

    CAS  Google Scholar 

  • Wang J, Chen C (2006) Biosorption of heavy metals by Sacharomyces cerevisiae: a review. Biotechnol Adv 24:427–451

    CAS  Google Scholar 

  • Wemmie JA, Szczypka MS, Thiele DJ, Moye-Rowley SM (1994) Cadmium tolerance mediated by the yeast AP1 protein requires the presence of an ATP-binding cassette transporter-encoding gene, YCF1. J Biol Chem 269:32592–32597

    CAS  Google Scholar 

  • White C, Gadd GM (1990) Biosorption of radionuclides by fungal biomass. J Chem Technol Biotechnol 49:331–343

    CAS  Google Scholar 

  • Whiteside SG, Plocke D (1992) Selection and characterisation of a copper-resistant subpopulation of Schizosaccharomyces pombe. J Gen Microbiol 138:2417–2423

    CAS  Google Scholar 

  • Wilhelmi BS, Duncan JR (1995) Metal recovery from Saccharomyces cerevisiae biosorption columns. Biotechnol Lett 17:1007–1012

    CAS  Google Scholar 

  • Winge DR, Jensen LT, Srinivasan C (1998) Metal-ion regulation of gene expression in yeast. Curr Opin Chem Biol 2:216–221

    CAS  Google Scholar 

  • Wunderlich C, Zhao Q, Zimmermann M, Wolf K (1995) Physiological characterization of a cadmium resistant mutant in the fission yeast Schizosaccharomyces pombe. Microbiol Res 150:233–237

    CAS  Google Scholar 

  • Yan G, Viraraghavan T (2003) Heavy-metal removal from aqueous solution by fungus Mucor rouxii. Water Res 37:4486–4496

    CAS  Google Scholar 

  • Yazgan A, Özcengiz G (1994) Subcellular distribution of accumulated heavy metals in Saccharomyces cerevisiae and Kluyveromyces marxianus. Biotechnol Lett 16:871–874

    CAS  Google Scholar 

  • Yetis U, Özcengiz G, Dilek FB, Ergen N, Dolek A (1998) Heavy metal biosorption by white-rot fungi. Water Sci Technol 38:323–330

    CAS  Google Scholar 

  • Yin H, He B, Peng H, Ye J, Yang F, Zhang N (2008) Removal of Cr(VI) and Ni(II) from aqeous solutions by fused yeast: study of cations release and biosorption mechanism. J Hazard Mat 158:568–576

    CAS  Google Scholar 

  • Yin PH, Yu QM, Jin B, Ling Z (1999) Biosorption removal of cadmium from aquous solution by using pretreated fungal biomass cultured from starch wastewater. Water Res 33:1960–1963

    CAS  Google Scholar 

  • Zafar S, Aqil F, Ahmad I (2007) Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresour Technol 98:2557–2561

    CAS  Google Scholar 

  • Zhao M, Duncan JR (1997) Use of formaldehyde crosslinked Saccharomyces cerevisiae in column bioreactors for removal of metals from aqueous solutions. Biotechnol Lett 19:953–955

    CAS  Google Scholar 

  • Zhou JL (1999) Zn biosorption by Rhizopus arrhizus and other fungi. Appl Microbiol Biotechnol 51:686–693

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Zimmermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zimmermann, M., Wolf, K. (2011). Biosorption of Metals. In: Hofrichter, M. (eds) Industrial Applications. The Mycota, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11458-8_18

Download citation

Publish with us

Policies and ethics