Skip to main content

Production of Vitamin B2 and a Polyunsaturated Fatty Acid by Fungi

  • Chapter
  • First Online:
Industrial Applications

Part of the book series: The Mycota ((MYCOTA,volume 10))

  • 3789 Accesses

Abstract

Vitamin B2 and arachidonic acid, both needed in food or feed, are produced by filamentous fungi on a scale of 1000 t/year. After 50 years of research and development, vitamin B2 production with Ashbya gossypii, a hemiascomycete, has won a competition with chemical synthesis by combining classical strain improvement, genetic engineering, and process optimization. Screening for antimetabolite resistance, overexpression, and disruption of genes were applied, resulting in a metabolically designed cellular factory. But although the genome of A. gossypii has been sequenced and analytical tools are highly developed, important questions are still open, e.g. concerning excretion of the vitamin. Arachidonic acid is a long-chain polyunsaturated fatty acid used for infant formula to support the development of the child’s brain. Mortierella alpina, a zygomycete, accumulates lipids rich in arachidonic acid when growth becomes limited, e.g. after consumption of the nitrogen source. The first steps in pathway engineering were done.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alessandri JM, Guesnet P, Vancassel S, Astorg P, Denis I, Langelier B, AĂŻd S, Poumès-Ballihaut C, Champeil-Potokar G, Lavialle M (2004) Polyunsaturated fatty acids in the central nervous system: evolution of concepts and nutritional implications throughout life. Reprod Nutr Dev 44:509–538

    Article  CAS  Google Scholar 

  • Althöfer H, Seulberger H, et al (1999) Genetic method for producing riboflavin. Patent WO 9961623

    Google Scholar 

  • Althöfer H, Zelder O, et al (2001) Monocellular or multicellular organisms for production of riboflavin. Patent WO 0111052

    Google Scholar 

  • Aranceta J, Serra-Majem L, Perez-Rodrigo C, Llopis J, Mataix J, Ribas L, Tojo R, Tur JA (2001) Vitamins in Spanish food patterns: the eVe study. Public Health Nutr 4:1317–1323

    CAS  Google Scholar 

  • Ashby SF, Nowell N (1926) The fungi of stigmatomycosis. Ann Bot 40:69–83

    Google Scholar 

  • Audley A, Goodwin N (1962) Studies on the biosynthesis of riboflavin. 7. The incorporation of adenine and guanine into riboflavin and into nucleic acid purines in Eremothecium ashbyii and Candida flareri. Biochem J 84:587–592

    CAS  Google Scholar 

  • Bacher A (1991) Biosynthesis of flavins. In: MĂĽller F (ed) Chemistry and biochemistry of flavoenzymes, vol 1. CRC, Boca Raton, pp 215–259

    Google Scholar 

  • Batra LR (1973) Nematosporaceae (Hemiascomycetidae): taxonomy, pathogenicity, distribution and vector relations. USDA Technol Bull 1469:1–71

    Google Scholar 

  • Burrows RB, Brown GM (1978) Presence in Escherichia coli of a deaminase and a reductase involved in biosynthesis of riboflavin. J Bacteriol 136:657

    CAS  Google Scholar 

  • Casas-Flores S, Rosales-Saavedra T, et al (2004) Three decades of fungal transformation: novel technologies. Methods Mol Biol 267:315–325

    CAS  Google Scholar 

  • Cashmore AR, Jarillo JA, Wu Y, Liu D (1999) Cryptochromes: blue light receptors for plants and animals. Science 284:760–765

    Article  CAS  Google Scholar 

  • Dammer KH, Ravelo HG (1990) Verseuchung von Leptoglossus gonagra (Fabr.) mit Nematospora coryli Peglion und Ashbya gossypii (Ashby et Novell) Guilliermond in einer Zitrusanlage der Republik Kuba. Arch Phytopathol Pflanzensch 26:71–78

    Article  Google Scholar 

  • de Swaaf ME, Pronk JT, Sijtsma L (2003) Fed-batch cultivation of the docosahexaenoic-acid-producing marine alga Crypthecodinium cohnii on ethanol. Appl Microbiol Biotechnol 61:40–43

    CAS  Google Scholar 

  • Demain AL (1972) Riboflavin oversynthesis. Annu Rev Microbiol 26:369–388

    Article  CAS  Google Scholar 

  • Eggersdorfer M, Adam G (1996) Vitamins, chapter 1, A27. In: Ullmann (ed) Ullmann’s encyclopedia of industrial chemistry. VCH, Weinheim, pp 521–530

    Google Scholar 

  • Faust T, Meyer J, et al (1991) Process for the separation of riboflavin from a fermentation suspension. Patent EP 0438767

    Google Scholar 

  • Fischer M, Bacher A (2005) Biosynthesis of flavocoenzymes. Nat Prod Rep 22:324–350

    Article  CAS  Google Scholar 

  • Fletcher RJ, Bell IP, Lambert JP (2004) Public health aspects of food fortification: a question of balance. Proc Nutr Soc 63:605–614

    Article  CAS  Google Scholar 

  • Förster C, Santos MA, Ruffert S, Krämer R, Revuelta JL (1999) Physiological consequence of the disruption of the VMA1 gene in the riboflavin overproducer Ashbya gossypii. J Biol Chem 274:9442–9448

    Article  Google Scholar 

  • Förster C, Revuelta JL, et al (2001) Carrier-mediated transport of riboflavin in Ashbya gossypii. Appl Microbiol Biotechnol 55:85–89

    Article  Google Scholar 

  • Ganuza E, Anderson AJ, Ratledge C (2008) High-cell-density cultivation of Schizochytrium sp. in an ammonium/pH-auxostat fed-batch system. Biotechnol Lett 30:1559–1564

    Article  CAS  Google Scholar 

  • Gattiker A, Rischatsch R, et al (2007) Ashbya genome database 3.0: a cross-species genome and transcriptome browser for yeast biologists. BMC Genomics 8:9

    Article  Google Scholar 

  • Grimmer J, Kiefer H, et al (1992) Process for the purification of riboflavin obtained by fermentation. Patent EP 0464582

    Google Scholar 

  • Heefner DL, Yarus MJ, Boyts A, Burdzinski LA (1987) Riboflavin production with yeast. Patent EP 0231605A2

    Google Scholar 

  • Heefner D, Weaver, CA, Yarus MJ, Burdzinski LA, Gyure DC, Foster EW (1988) Riboflavin producing strains of microorganisms, method for selecting, and method for fermentation. Patent WO 88/09822

    Google Scholar 

  • Heefner DL, Weaver CA, Yarus MJ, Burdzinski LA (1992) Method for producing riboflavin with Candida famata. Patent US 005164303A

    Google Scholar 

  • Heefner D, Boyts A, Burdzinski L et al (1993) Efficient riboflavin production with yeast. Patent US 005231007 A

    Google Scholar 

  • Heird and Lapillonne (2005) The role of essential fatty acids in development. Annu Rev Nutr 25:23.1–23.23

    Google Scholar 

  • Hohmann HP, Stahmann KP (2010) Biotechnology of riboflavin production. In: Lew M, Hung WL (eds) Comprehensive natural products chemistry II. Elsevier, Oxford, pp 115–139

    Google Scholar 

  • Hou CT (2008) Production of arachidonic acid and dihomo-gamma-linolenic acid from glycerol by oil-producing filamentous fungi, Mortierella in the ARS culture collection. J Ind Microbiol Biotechnol 35:501–506

    Article  CAS  Google Scholar 

  • Huang YS, Chaudhary S, Thurmond JM, Bobik EG Jr, Yuan L, Chan GM, Kirchner SJ, Mukerji P, Knutzon DS (1999) Cloning of delta12- and delta6-desaturases from Mortierella alpina and recombinant production of gamma-linolenic acid in Saccharomyces cerevisiae. Lipids 34:649–659

    Article  CAS  Google Scholar 

  • Jimenez A, Santos MA, et al (2005) Metabolic engineering of the purine pathway for riboflavin production in Ashbya gossypii. Appl Environ Microbiol 71:5743–5751

    Article  CAS  Google Scholar 

  • Kawashima H, Akimoto K, Yamada H, et al (1992) Process for production of 8,11-eicosadienoic acid. Patent EPA 0535941 A1

    Google Scholar 

  • Knutzon DS, Thurmond JM, Huang YS, Chaudhary S, Bobik EG Jr, Chan GM, Kirchner SJ, Mukerji P (1998) Identification of delta5-desaturase from Mortierella alpina by heterologous expression in bakers’ yeast and canola. J Biol Chem 273:29360–29366

    Article  CAS  Google Scholar 

  • Kurth R (1992) Process for the enhancement of riboflavin levels in spray-dried riboflavin fermentation extracts. Patent EP 0487985

    Google Scholar 

  • Lago BD, Kaplan L (1981) Vitamin fermentations: B2 and B12. Adv Biotechnol 3:241–246

    CAS  Google Scholar 

  • Lindberg AM, Molin G (1993) Effect of temperature and glucose supply on the production of polyunsaturated fatty acids by the fungus Mortierella alpina in fermenter cultures. Appl Microbiol Biotechnol 39:450–455

    Article  CAS  Google Scholar 

  • Lounds C, Eagles J, Carter AT, MacKenzie DA, Archer DB (2007) Spore germination in Mortierella alpina is associated with a transient depletion of arachidonic acid and induction of fatty acid desaturase gene expression. Arch Microbiol 188:299–305

    Article  CAS  Google Scholar 

  • Maeting I, Schmidt G, Sahm H, Revuelta JL, Stierhof YD, Stahmann KP (1999) Isocitrate lyase of Ashbya gossypii - transcriptional regulation and peroxisomal localization. FEBS Lett 444:15–21

    Article  CAS  Google Scholar 

  • Maeting I, Schmidt G, Sahm H, Stahmann KP (2000) Role of a peroxisomal NADP-specific isocitrate dehydrogenase in the metabolism of the riboflavin overproducer Ashbya gossypii. J Mol Catal 10:335–343

    Article  CAS  Google Scholar 

  • Marszalek JR, Lodish HF (2005) Docosahexaenoic acid, fatty acid-interacting proteins, and neuronal function: breastmilk and fish are good for you. Annu Rev Cell Dev Biol 21:633–657

    Article  CAS  Google Scholar 

  • Mateos L, JimĂ©nez A, Revuelta JL, Santos MA (2006) Purine biosynthesis, riboflavin production, and trophic-phase span are controlled by a Myb-related transcription factor in the fungus Ashbya gossypii. Appl Environ Microbiol 72:5052–5060

    Article  CAS  Google Scholar 

  • Monschau N, Sahm H, Stahmann KP (1998) Threonine aldolase overexpression plus threonine supplementation enhanced riboflavin production in Ashbya gossypii. Appl Environ Microbiol 64:4283–4290

    CAS  Google Scholar 

  • Monschau N, Stahmann KP, Sahm H, Zelder O (1999) Uni- or multicellular microorganisms for the production of riboflavin. Patent EP 0930367 A2

    Google Scholar 

  • Nisha A, Muthukumar SP, Venkateswaran G (2009) Safety evaluation of arachidonic acid rich Mortierella alpina biomass in albino rats – a subchronic study. Regul Toxicol Pharmacol 53:186–194

    Article  CAS  Google Scholar 

  • Olczyk C (1978) A n-Alkanes as a substratum for riboflavin production. I. Investigations of the dynamics of the flavinogenesis in chosen yeasts of the genus Candida. Pol J Pharmacol Pharm 30:83–88

    Article  CAS  Google Scholar 

  • Oltmanns O, Bacher A (1972) Biosynthesis of riboflavin in Saccharomyces cerevisiae: the role of genes rib1 and rib7. J Bacteriol 110:818–822

    CAS  Google Scholar 

  • Parker-Barnes JM, Das T, Bobik E, Leonard AE, Thurmond JM, Chaung LT, Huang YS, Mukerji P (2000) Identification and characterization of an enzyme involved in the elongation of n-6 and n-3 polyunsaturated fatty acids. Proc Natl Acad Sci USA 97:8284–8289

    Article  CAS  Google Scholar 

  • Perlman D (1979) Microbial process for riboflavin production. In: Peppler H, Perlman D (eds) Microbial technology, microbial processes, vol 1, 2nd edn. Academic, New York, pp 521–527

    Google Scholar 

  • Plaut GWE (1954) Biosynthesis of riboflavin. II. Incorporation of C14-labelled compounds into ring A. J Biol Chem 211:111–116

    CAS  Google Scholar 

  • Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86:807–815

    Article  CAS  Google Scholar 

  • Revuelta DJL, Sanios Garcia MA, Garcia Ramirez JJ, Gonzales-Hernandez GA, Buitrago Sema MJ (1994) Saccharomyces cerevisiae recombinant riboflavin production. Patent WPI 94-177113

    Google Scholar 

  • Revuelta DJL, Buitrago SMJ, Santos GMA (1995) Riboflavin synthesis in fungi. Patent WO 9526406-A

    Google Scholar 

  • Sakuradani E, Kobayashi M, Shimizu S (1999a) Delta6-fatty acid desaturase from an arachidonic acid-producing Mortierella fungus. Gene cloning and its heterologous expression in a fungus, Aspergillus. Gene 238:445–453

    Article  CAS  Google Scholar 

  • Sakuradani E, Kobayashi M, Shimizu S (1999b) Delta9-fatty acid desaturase from arachidonic acid-producing fungus. Unique gene sequence and its heterologous expression in a fungus, Aspergillus. Eur J Biochem 260:208–216

    Article  CAS  Google Scholar 

  • Sakuradani E, Kobayashi M, Ashikari T, Shimizu S (1999c) Identification of Delta12-fatty acid desaturase from arachidonic acid-producing mortierella fungus by heterologous expression in the yeast Saccharomyces cerevisiae and the fungus Aspergillus oryzae. Eur J Biochem 261:812–820

    Article  CAS  Google Scholar 

  • Sakuradani E, Ando A, Ogawa J, Shimizu S (2009) Improved production of various polyunsaturated fatty acids through filamentous fungus Mortierella alpina breeding. Appl Microbiol Biotechnol 84:1–10

    Article  CAS  Google Scholar 

  • Schlösser T, Schmidt G, et al (2001) Transcriptional regulation of 3,4-dihydroxy-2-butanone 4-phosphate synthase. Microbiology 147:3377–3386

    Google Scholar 

  • Schlösser T, Wiesenburg A, et al (2007) Growth stress triggers riboflavin overproduction in Ashbya gossypii. Appl Microbiol Biotechnol 76:569–578

    Article  Google Scholar 

  • Schmidt G, Stahmann KP, Sahm H (1996a) Isolation and characterization of isocitrate lyase from the riboflavin-producing fungus Ashbya gossypii. Microbiology 142:411–417

    Article  CAS  Google Scholar 

  • Schmidt G, Stahmann KP, Kaesler B, Sahm H (1996b) Correlation of isocitrate lyase activity and riboflavin formation in the riboflavin overproducer Ashbya gossypii. Microbiology 142:419–426

    Article  CAS  Google Scholar 

  • Stahmann KP, Kupp C, Feldmann SD, et al (1994) Formation and degradation of lipid bodies found in the riboflavin-producing fungus Ashbya gossypii. Appl Microbiol Biotechnol 42:121–127

    Article  CAS  Google Scholar 

  • Stahmann KP, Böddecker T, Sahm H (1997) Regulation and properties of a fungal lipase showing interfacial inactivation by gas bubbles, or droplets of lipid or fatty acid. Eur J Biochem 244:220–225

    Article  CAS  Google Scholar 

  • Stahmann KP, Revuelta JL, Seulberger H (2000) Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production. Appl Microbiol Biotechnol 53:509–516

    Article  CAS  Google Scholar 

  • Stahmann KP, Arst HN, et al (2001) Riboflavin, overproduced during sporulation of Ashbya gossypii, protects its hyaline spores against ultraviolet light. Environ Microbiol 3:545–550

    Article  CAS  Google Scholar 

  • Steiner S, Philippsen P (1994) Sequence and promoter analysis of the highly expressed TEF gene of the filamentous fungus Ashbya gossypii. Mol Gen Genet 242:263–271

    Article  CAS  Google Scholar 

  • Steiner S, Wendland J, Wright MC, et al (1995) Homologous recombination as the main mechanism for DNA integration and cause of rearrangements in the filamentous ascomycete Ashbya gossypii. Genetics 140:973–987

    CAS  Google Scholar 

  • Streekstra H (1997) On the saftey of Mortierella alpina for the production of food ingredients, such as arachidonic acid. J Biotechnol 56:153–165

    Article  CAS  Google Scholar 

  • Takeno S, Sakuradani E, Murata S, Inohara-Ochiai M, Kawashima H, Ashikari T, Shimizu S (2004) Establishment of an overall transformation system for an oil-producing filamentous fungus, Mortierella alpina 1S-4. Appl Microbiol Biotechnol 65(4):419–425

    Article  CAS  Google Scholar 

  • Takeno S, Sakuradani E, Tomi A, Inohara-Ochiai M, Kawashima H, Shimizu S (2005) Transformation of oil-producing fungus, Mortierella alpina 1S-4, using Zeocin, and application to arachidonic acid production. J Biosci Bioeng 100:617–622

    Article  CAS  Google Scholar 

  • Voronovsky AA, Abbas CA, Fayura LR, Kshanovska BV, Dmytruk KV, Sybirna KA, Sibirny AA (2002) Development of a transformation system for the flavinogenic yeast Candida famata. FEMS Yeast Res 2:381–388

    CAS  Google Scholar 

  • Wendland J, Ayad-Durieux Y, et al (2000) PCR-based gene targeting in the filamentous fungus Ashbya gossypii. Gene 242:381–391

    Article  CAS  Google Scholar 

  • Wickerham LJ, Flickinger MH, Johnsten RM (1946) The production of riboflavin by Ashbya gossypii. Arch Biochem 9:95–98

    CAS  Google Scholar 

  • Wright P, Philippsen P (1991) Replicative transformation of the filamentous fungus Ashbya gossypii with plasmids containing Saccharomyces cerevisiae ARS elements. Gene 109:99–105

    Article  CAS  Google Scholar 

  • Yatsyshyn VY, Ishchuk OP, Voronovsky AY, Fedorovych DV, Sibirny AA (2009) Production of flavin mononucleotide by metabolically engineered yeast Candida famata. Metab Eng 11:163–167

    Article  CAS  Google Scholar 

  • Zhang Y, Ratledge C (2008) Multiple isoforms of malic enzyme in the oleaginous fungus Mortierella alpina. Mycol Res 112:725–730

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.-Peter Stahmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stahmann, KP. (2011). Production of Vitamin B2 and a Polyunsaturated Fatty Acid by Fungi. In: Hofrichter, M. (eds) Industrial Applications. The Mycota, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11458-8_11

Download citation

Publish with us

Policies and ethics