Advertisement

Cutting a Convex Polyhedron Out of a Sphere

(Extended Abstract)
  • Syed Ishtiaque Ahmed
  • Masud Hasan
  • Md. Ariful Islam
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5942)

Abstract

Given a convex polyhedron P of n vertices inside a sphere Q, we give an O(n 3)-time algorithm that cuts P out of Q by using guillotine cuts and has cutting cost O(log2 n) times the optimal.

Keywords

Approximation algorithm guillotine cut polyhedra cutting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahmed, S.I., Hasan, M., Islam, M.A.: Cutting a cornered convex polygon out of a circle. Journal of Computers (to appear), http://203.208.166.84/masudhasan/cut.pdf
  2. 2.
    Bereg, S., Daescu, O., Jiang, M.: A PTAS for cutting out polygons with lines. In: Chen, D.Z., Lee, D.T. (eds.) COCOON 2006. LNCS, vol. 4112, pp. 176–185. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Bhadury, J., Chandrasekaran, R.: Stock cutting to minimize cutting length. Euro. J. Oper. Res. 88, 69–87 (1996)zbMATHCrossRefGoogle Scholar
  4. 4.
    Chandrasekaran, R., Daescu, O., Luo, J.: Cutting out polygons. In: CCCG 2005, pp. 183–186 (2005)Google Scholar
  5. 5.
    Daescu, O., Luo, J.: Cutting out polygons with lines and rays. International Journal of Computational Geometry and Applications 16, 227–248 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications, 2nd edn. Springer, Heidelberg (2000)zbMATHGoogle Scholar
  7. 7.
    Demaine, E.D., Demaine, M.L., Kaplan, C.S.: Polygons cuttable by a circular saw. Computational Geometry: Theory and Algorithms 20, 69–84 (2001)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Dumitrescu, A.: An approximation algorithm for cutting out convex polygons. Computational Geometry: Theory and Algorithms 29, 223–231 (2004)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Dumitrescu, A.: The cost of cutting out convex n-gons. Discrete Applied Mathematics 143, 353–358 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Jaromczyk, J.W., Kowaluk, M.: Sets of lines and cutting out polyhedral objects. Computational Geometry: Theory and Algorithms 25, 67–95 (2003)zbMATHMathSciNetGoogle Scholar
  11. 11.
    O’Rourke, J.: Finding minimal enclosing boxes. International Journal of Computer and Information Sciences 14(3), 183–199 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Overmars, M.H., Welzl, E.: The complexity of cutting paper. In: SoCG 1985, pp. 316–321 (1985)Google Scholar
  13. 13.
    Tan, X.: Approximation algorithms for cutting out polygons with lines and rays. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 534–543. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Toussaint, G.: Solving geometric problems with the rotating calipers. In: MELECON 1983, Athens, Greece (1983)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Syed Ishtiaque Ahmed
    • 1
  • Masud Hasan
    • 1
  • Md. Ariful Islam
    • 1
  1. 1.Department of Computer Science and EngineeringBangladesh University of Engineering and TechnologyDhakaBangladesh

Personalised recommendations