Advertisement

Switch-Regular Upward Planar Embeddings of Trees

  • Carla Binucci
  • Emilio Di Giacomo
  • Walter Didimo
  • Aimal Rextin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5942)

Abstract

Upward planar drawings of digraphs are crossing free drawings where all edges flow in the upward direction. The problem of deciding whether a digraph admits an upward planar drawing is called the upward planarity testing problem, and it has been widely studied in the literature. In this paper we investigate a new version of this problem: Deciding whether a digraph admits a switch-regular upward planar drawing, i.e., an upward planar drawing with specific topological properties. Switch-regular upward planar drawings have applications in the design of efficient checkers and in the design of effective compaction heuristics. We provide characterizations for the class of directed trees that admit a switch-regular upward planar drawing. Based on these characterizations we describe an optimal linear-time testing and embedding algorithm.

Keywords

Directed Tree Planar Embedding Planar Drawing Acyclic Digraph Counterclockwise Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bertolazzi, P., Di Battista, G., Didimo, W.: Quasi-upward planarity. Algorithmica 32(3), 474–506 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bertolazzi, P., Di Battista, G., Liotta, G., Mannino, C.: Upward drawings of triconnected digraphs. Algorithmica 6(12), 476–497 (1994)CrossRefGoogle Scholar
  3. 3.
    Bertolazzi, P., Di Battista, G., Mannino, C., Tamassia, R.: Optimal upward planarity testing of single-source digraphs. SIAM Journal on Computing 27, 132–169 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Binucci, C., Giacomo, E.D., Didimo, W., Rextin, A.: Switch-regular upward planarity testing of directed trees. Technical Report RT-001-09, DIEI, Univ. Perugia (2009), http://www.diei.unipg.it/rt/rt_frames.htm
  5. 5.
    Bridgeman, S.S., Battista, G.D., Didimo, W., Liotta, G., Tamassia, R., Vismara, L.: Turn-regularity and optimal area drawings of orthogonal representations. Comput. Geom. 16(1), 53–93 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Chan, H.: A parameterized algorithm for upward planarity testing. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 157–168. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Devillers, O., Liotta, G., Preparata, F.P., Tamassia, R.: Checking the convexity of polytopes and the planarity of subdivisions. Comput. Geom. 11(3-4), 187–208 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice-Hall, Upper Saddle River (1999)zbMATHGoogle Scholar
  9. 9.
    Di Battista, G., Liotta, G.: Upward planarity checking: “faces are more than polygon”. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 72–86. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Didimo, W.: Upward planar drawings and switch-regularity heuristics. Journal of Graph Algorithms and Applications 10(2), 259–285 (2006)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Didimo, W., Giordano, F., Liotta, G.: Upward spirality and upward planarity testing. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 117–128. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM Journal on Computing 31(2), 601–625 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Healy, P., Lynch, K.: Fixed-parameter tractable algorithms for testing upward planarity. International Journal of Foundations of Computer Science 17(5), 1095–1114 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Hutton, M.D., Lubiw, A.: Upward planarity testing of single-source acyclic digraphs. SIAM Journal on Computing 25(2), 291–311 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Papakostas, A.: Upward planarity testing of outerplanar dags. In: Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 298–306. Springer, Heidelberg (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Carla Binucci
    • 1
  • Emilio Di Giacomo
    • 1
  • Walter Didimo
    • 1
  • Aimal Rextin
    • 2
  1. 1.University of PerugiaItaly
  2. 2.University of LimerickIreland

Personalised recommendations