A Simple and Fast Algorithm for Maximum Independent Set in 3-Degree Graphs

(Extended Abstract)
  • Mingyu Xiao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5942)


We present a simple O *(1.0885 n )-time algorithm for finding a maximum independent set in an n-vertex graph with degree bounded by 3, which improves most previous running time bounds obtained with far more complicated algorithms. In this paper, we use a nontraditional measure to analyze the problem size and some uniform branching rules to avoid tedious case analysis. Those techniques help us to design simple and fast algorithms with moderately complicated analysis.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tarjan, R., Trojanowski, A.: Finding a maximum independent set. SIAM J. on Computing 6(3), 537–546 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Jian, T.: An O(20.304n) algorithm for solving maximum independent set problem. IEEE Transactions on Computers 35(9), 847–851 (1986)zbMATHCrossRefGoogle Scholar
  3. 3.
    Robson, J.: Algorithms for maximum independent sets. J. of Algorithms 7(3), 425–440 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Robson, J.: Finding a maximum independent set in time O(2n/4). Technical Report 1251-01, LaBRI, Université Bordeaux I (2001)Google Scholar
  5. 5.
    Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and conquer: a simple O(20.288n) independent set algorithm. In: SODA, pp. 18–25. ACM Press, New York (2006)CrossRefGoogle Scholar
  6. 6.
    Beigel, R.: Finding maximum independent sets in sparse and general graphs. In: SODA, pp. 856–857. ACM Press, New York (1999)Google Scholar
  7. 7.
    Chen, J., Kanj, I.A., Xia, G.: Labeled search trees and amortized analysis: Improved upper bounds for NP-hard problems. Algorithmica 43(4), 245–273 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Xiao, M.Y., Chen, J.E., Han, X.L.: Improvement on vertex cover and independent set problems for low-degree graphs. Chinese Journal of Computers 28(2), 153–160 (2005)MathSciNetGoogle Scholar
  9. 9.
    Bourgeois, N., Escoffier, B., Paschos, V.T.: An O *(1.0977n) exact algorithm for max independent set in sparse graphs. In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 55–65. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Fomin, F.V., Høie, K.: Pathwidth of cubic graphs and exact algorithms. Inf. Process. Lett. 97(5), 191–196 (2006)zbMATHCrossRefGoogle Scholar
  11. 11.
    Fürer, M.: A faster algorithm for finding maximum independent sets in sparse graphs. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 491–501. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Razgon, I.: A faster solving of the maximum independent set problem for graphs with maximal degree 3. In: Broersma, H., Dantchev, S.S., Johnson, M., Szeider, S. (eds.) ACiD. Texts in Algorithmics, vol. 7, pp. 131–142. King’s College, London (2006)Google Scholar
  13. 13.
    Razgon, I.: Faster computation of maximum independent set and parameterized vertex cover for graphs with maximum degree 3. J. of Discrete Algorithms 7(2), 191–212 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Chen, J., Kanj, I., Xia, G.: Simplicity is beauty: Improved upper bounds for vertex cover. Technical Report TR05-008, School of CTI, DePaul University (2005)Google Scholar
  15. 15.
    Bourgeois, N., Escoffier, B., Paschos, V.T., van Rooij, J.M.M.: Fast algorithms for max independent set in graphs of small average degree. CoRR abs/0901.1563 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Mingyu Xiao
    • 1
  1. 1.School of Computer Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations