Advertisement

WALCOM 2010: WALCOM: Algorithms and Computation pp 263-268

# Real Root Isolation of Multi-Exponential Polynomials with Application

• Ming Xu
• Liangyu Chen
• Zhenbing Zeng
• Zhi-bin Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5942)

## Abstract

Real root isolation problem is to compute a list of disjoint intervals, each containing a distinct real root and together containing all. Traditional methods and tools often attack the root isolation for ordinary polynomials. However many other complex systems in engineering are modeling with non-ordinary polynomials. In this paper, we extend the pseudo-derivative sequences and Budan–Fourier theorem for multi-exponential polynomials to estimate the bounds and counts of all real roots. Furthermore we present an efficient algorithm for isolating all real roots under given minimum root separation. As a proof of serviceability, the reachability of linear systems with real eigenvalues only is approximately computable by this algorithm.

## Preview

Unable to display preview. Download preview PDF.

## References

1. 1.
Uspensky, J.V.: Theory of Equations. McGraw-Hill, New York (1948)Google Scholar
2. 2.
Collins, G.E., Loos, R.: Real zeros of polynomials. In: Buchberger, B., Collins, G.E., Loos, R. (eds.) Computer Algebra: Symbolic and Algebraic Computation, pp. 83–94. Springer, Heidelberg (1983)Google Scholar
3. 3.
Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimination. J. Symb. Comput. 12(3), 299–328 (1991)
4. 4.
Yang, L., Hou, X., Zeng, Z.: A complete discrimination system for polynomials. Science in China (Ser. E) 39, 628–646 (1996)
5. 5.
Tsigaridas, E.P., Emiris, I.Z.: Univariate polynomial real root isolation: Continued fractions revisited. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 817–828. Springer, Heidelberg (2006)
6. 6.
Lafferriere, G., Pappas, G.J., Yovine, S.: Symbolic reachability computaion for families of linear vector fields. J. Symb. Comput. 32(3), 231–253 (2001)
7. 7.
Achatz, M., McCallum, S., Weispfenning, V.: Deciding polynomial-exponential problems. In: ISSAC 2008, pp. 215–222. ACM Press, New York (2008)
8. 8.
Akritas, A.G.: Elements of Computer Algebra with Applications. Wiley, New York (1989)

## Copyright information

© Springer-Verlag Berlin Heidelberg 2010

## Authors and Affiliations

• Ming Xu
• 1
• 2
• Liangyu Chen
• 1
• Zhenbing Zeng
• 1
• Zhi-bin Li
• 1
• 2
1. 1.Shanghai Key Laboratory of Trustworthy Computing
2. 2.Computer Science and Technology DepartmentEast China Normal UniversityShanghaiChina

## Personalised recommendations

### Citepaper 