Skip to main content

A Rooted-Forest Partition with Uniform Vertex Demand

  • Conference paper
WALCOM: Algorithms and Computation (WALCOM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5942))

Included in the following conference series:

  • 822 Accesses

Abstract

A rooted-forest is a graph having self-loops such that each connected component contains exactly one loop, which is regarded as a root, and there exists no cycle consisting of non-loop edges. In this paper, we shall study on a partition of a graph into edge-disjoint rooted-forests such that each vertex is spanned by exactly d components of the partition, where d is a positive integer.

The first author is supported by Grant-in-Aid for Scientific Research (B) and Grant-in-Aid for Scientific Research (C), JSPS. The second author is supported by Grant-in-Aid for JSPS Research Fellowships for Young Scientists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Crapo, H.: On the generic rigidity of plane frameworks. Technical report, Institut National de Recherche en Informatique et en Automatique (1990)

    Google Scholar 

  2. Fekete, Z., Szegö, L.: A note on [k,l]-sparse graphs. In: Graph Theory in Paris; A Conference in Memory of Claude Berge, pp. 169–177 (2004)

    Google Scholar 

  3. Frank, A., Szego, L.: Constructive characterizations for packing and covering with trees. Discrete Applied Mathematics 131(2), 347–371 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Gabow, H., Tarjan, R.: A linear-time algorithm for finding a minimum spanning pseudoforest. Information Processing Letters 27(5), 259–263 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gabow, H., Westermann, H.: Forests, frames, and games: algorithms for matroid sums and applications. Algorithmica 7(1), 465–497 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Haas, R.: Characterizations of arboricity of graphs. Ars Combinatoria 63, 129–138 (2002)

    MATH  MathSciNet  Google Scholar 

  7. Imai, H.: Network flow algorithms for lower truncated transversal polymatroids. Journal of the Operations Research Society of Japan 26(3), 186–210 (1983)

    MATH  MathSciNet  Google Scholar 

  8. Katoh, N., Tanigawa, S.: A proof of the molecular conjecture. In: Proceedings of the 25th annual symposium on Computational geometry, pp. 296–305. ACM, New York (2009)

    Chapter  Google Scholar 

  9. Katoh, N., Tanigawa, S.: On the infinitesimal rigidity of bar-and-slider frameworks. In: Dong, Y., Du, D.-Z. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 524–533. Springer, Heidelberg (2009)

    Google Scholar 

  10. Laman, G.: On graphs and rigidity of plane skeletal structures. Journal of Engineering mathematics 4(4), 331–340 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  11. Nash-Williams, C.: Edge-disjoint spanning trees of finite graphs. Journal of the London Mathematical Society 1(1), 445 (1961)

    Article  Google Scholar 

  12. Oxley, J.: Matroid theory. Oxford University Press, USA (1992)

    MATH  Google Scholar 

  13. Pym, J., Perfect, H.: Submodular functions and independence structures. J. Math. Anal. Appl. 30(1-31), 33 (1970)

    MathSciNet  Google Scholar 

  14. Recski, A.: Network theory approach to the rigidity of skeletal structures. Part II. Laman’s theorem and topological formulae. Discrete Appl. Math. 8(1), 63–68 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  15. Schrijver, A.: Combinatorial optimization: polyhedra and efficiency. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  16. Tay, T.: Rigidity of multi-graphs. I. Linking rigid bodies in n-space. Journal of combinatorial theory. Series B 36(1), 95–112 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  17. Tay, T.: Linking (n − 2)-dimensional panels in n-space II:(n − 2, 2)-frameworks and body and hinge structures. Graphs and Combinatorics 5(1), 245–273 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  18. Tay, T.: A new proof of Lamans theorem. Graphs and combinatorics 9(2), 365–370 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  19. Tutte, W.: On the problem of decomposing a graph into n connected factors. J. London Math. Soc. 36, 221–230 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  20. Whiteley, W.: The union of matroids and the rigidity of frameworks. SIAM Journal on Discrete Mathematics 1, 237 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  21. Whiteley, W.: Some matroids from discrete applied geometry. Contemporary Mathematics 197, 171–312 (1996)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Katoh, N., Tanigawa, Si. (2010). A Rooted-Forest Partition with Uniform Vertex Demand. In: Rahman, M.S., Fujita, S. (eds) WALCOM: Algorithms and Computation. WALCOM 2010. Lecture Notes in Computer Science, vol 5942. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11440-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11440-3_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11439-7

  • Online ISBN: 978-3-642-11440-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics