Advertisement

A Rooted-Forest Partition with Uniform Vertex Demand

  • Naoki Katoh
  • Shin-ichi Tanigawa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5942)

Abstract

A rooted-forest is a graph having self-loops such that each connected component contains exactly one loop, which is regarded as a root, and there exists no cycle consisting of non-loop edges. In this paper, we shall study on a partition of a graph into edge-disjoint rooted-forests such that each vertex is spanned by exactly d components of the partition, where d is a positive integer.

Keywords

Counting Condition Submodular Function Capacity Function Vertex Incident Rigid Framework 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Crapo, H.: On the generic rigidity of plane frameworks. Technical report, Institut National de Recherche en Informatique et en Automatique (1990)Google Scholar
  2. 2.
    Fekete, Z., Szegö, L.: A note on [k,l]-sparse graphs. In: Graph Theory in Paris; A Conference in Memory of Claude Berge, pp. 169–177 (2004)Google Scholar
  3. 3.
    Frank, A., Szego, L.: Constructive characterizations for packing and covering with trees. Discrete Applied Mathematics 131(2), 347–371 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Gabow, H., Tarjan, R.: A linear-time algorithm for finding a minimum spanning pseudoforest. Information Processing Letters 27(5), 259–263 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Gabow, H., Westermann, H.: Forests, frames, and games: algorithms for matroid sums and applications. Algorithmica 7(1), 465–497 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Haas, R.: Characterizations of arboricity of graphs. Ars Combinatoria 63, 129–138 (2002)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Imai, H.: Network flow algorithms for lower truncated transversal polymatroids. Journal of the Operations Research Society of Japan 26(3), 186–210 (1983)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Katoh, N., Tanigawa, S.: A proof of the molecular conjecture. In: Proceedings of the 25th annual symposium on Computational geometry, pp. 296–305. ACM, New York (2009)CrossRefGoogle Scholar
  9. 9.
    Katoh, N., Tanigawa, S.: On the infinitesimal rigidity of bar-and-slider frameworks. In: Dong, Y., Du, D.-Z. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 524–533. Springer, Heidelberg (2009)Google Scholar
  10. 10.
    Laman, G.: On graphs and rigidity of plane skeletal structures. Journal of Engineering mathematics 4(4), 331–340 (1970)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Nash-Williams, C.: Edge-disjoint spanning trees of finite graphs. Journal of the London Mathematical Society 1(1), 445 (1961)CrossRefGoogle Scholar
  12. 12.
    Oxley, J.: Matroid theory. Oxford University Press, USA (1992)zbMATHGoogle Scholar
  13. 13.
    Pym, J., Perfect, H.: Submodular functions and independence structures. J. Math. Anal. Appl. 30(1-31), 33 (1970)MathSciNetGoogle Scholar
  14. 14.
    Recski, A.: Network theory approach to the rigidity of skeletal structures. Part II. Laman’s theorem and topological formulae. Discrete Appl. Math. 8(1), 63–68 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Schrijver, A.: Combinatorial optimization: polyhedra and efficiency. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  16. 16.
    Tay, T.: Rigidity of multi-graphs. I. Linking rigid bodies in n-space. Journal of combinatorial theory. Series B 36(1), 95–112 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Tay, T.: Linking (n − 2)-dimensional panels in n-space II:(n − 2, 2)-frameworks and body and hinge structures. Graphs and Combinatorics 5(1), 245–273 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Tay, T.: A new proof of Lamans theorem. Graphs and combinatorics 9(2), 365–370 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Tutte, W.: On the problem of decomposing a graph into n connected factors. J. London Math. Soc. 36, 221–230 (1961)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Whiteley, W.: The union of matroids and the rigidity of frameworks. SIAM Journal on Discrete Mathematics 1, 237 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Whiteley, W.: Some matroids from discrete applied geometry. Contemporary Mathematics 197, 171–312 (1996)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Naoki Katoh
    • 1
  • Shin-ichi Tanigawa
    • 1
  1. 1.Department of Architecture and Architectural EngineeringKyoto UniversityKyotoJapan

Personalised recommendations