The 1.375 Approximation Algorithm for Sorting by Transpositions Can Run in O(nlogn) Time

  • Jesun S. Firoz
  • Masud Hasan
  • Ashik Z. Khan
  • M. Sohel Rahman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5942)


We improve the running time from O(n 2) to O(nlogn) of the existing best known 1.375−approximation algorithm for sorting by transpositions with the help of the permutation tree data structure.


Approximation Algorithm Binary Search Tree Open Gate Mutation Tree Oriented Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bafna, V., Pevzner, P.A.: Sorting by transpositions. SIAM J. Discrete Math. 11(2), 224–240 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Christie, D.: Genome rearrangement problem. Ph.D. Thesis, University of Glasgow (1999)Google Scholar
  3. 3.
    Elias, I., Hartman, T.: A 1.375-approximation algorithm for sorting by transpositions. IEEE/ACM Trans. Comput. Biology Bioinform. 3(4), 369–379 (2006)CrossRefGoogle Scholar
  4. 4.
    Eriksson, H., Eriksson, K., Karlander, J., Svensson, L.J., Wästlund, J.: Sorting a bridge hand. Discrete Mathematics 241(1-3), 289–300 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Feng, J., Zhu, D.: Faster algorithms for sorting by transpositions and sorting by block interchanges. ACM Transactions on Algorithms 3(3) (2007)Google Scholar
  6. 6.
    Gu, Q.-P., Peng, S., Sudborough, I.H.: A 2-approximation algorithm for genome rearrangements by reversals and transpositions. Theor. Comput. Sci. 210(2), 327–339 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip: Polynomial algorithm for sorting signed permutations by reversals. J. ACM 46(1), 1–27 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Hartman, T., Shamir, R.: A simpler and faster 1.5-approximation algorithm for sorting by transpositions. Inf. Comput. 204(2), 275–290 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. J. ACM 32(3), 652–686 (1985)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jesun S. Firoz
    • 1
  • Masud Hasan
    • 1
  • Ashik Z. Khan
    • 1
  • M. Sohel Rahman
    • 1
    • 2
  1. 1.Department of Computer Science and EngineeringBUETDhakaBangladesh
  2. 2.Department of Computer ScienceKing’s College LondonUK

Personalised recommendations