Advertisement

Reconstruction Algorithm for Permutation Graphs

  • Masashi Kiyomi
  • Toshiki Saitoh
  • Ryuhei Uehara
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5942)

Abstract

PREIMAGE CONSTRUCTION problem by Kratsch and Hemaspaandra naturally arose from the famous graph reconstruction conjecture. It deals with the algorithmic aspects of the conjecture. We present an \(\mbox{\cal O}(n^8)\) time algorithm for PREIMAGE CONSTRUCTION on permutation graphs, where n is the number of graphs in the input. Since each graph of the input has n − 1 vertices and \(\mbox{\cal O}(n^2)\) edges, the input size is \(\mbox{\cal O}(n^3)\). There are polynomial time isomorphism algorithms for permutation graphs. However the number of permutation graphs obtained by adding a vertex to a permutation graph is generally exponentially large. Thus exhaustive checking of these graphs does not achieve any polynomial time algorithm. Therefore reducing the number of preimage candidates is the key point.

Keywords

the graph reconstruction conjecture permutation graphs polynomial time algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bandelt, H., Mulder, H.M.: Distance-hereditary graphs. Journal of Combinatorial Theory, Series B 41, 182–208 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bollobás, B.: Almost every graph has reconstruction number three. Journal of Graph Theory 14, 1–4 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bondy, J.A.: A graph reconstructor’s manual. In: Surveys in Combinatorics. London Mathematical Society Lecture Note Series, vol. 166, pp. 221–252 (1991)Google Scholar
  4. 4.
    Brandstädt, A., Spinrad, J.P.: Graph classes: a survey. SIAM, Philadelphia (1999)zbMATHGoogle Scholar
  5. 5.
    Dahlhaus, E., Gustedt, J., McConnell, R.M.: Efficient and practical algorithms for sequential modular decomposition. Journal of Algorithms 41, 360–387 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Even, S.: Algorithmic Combinatorics. Macmillan, New York (1973)zbMATHGoogle Scholar
  7. 7.
    Gallai, T.: Transitiv orientierbare graphen. Acta Mathematica Hungarica 18, 25–66 (1967)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Greenwell, D.L., Hemminger, R.L.: Reconstructing the n-connected components of a graph. Aequationes Mathematicae 9, 19–22 (1973)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Harary, F.: A survey of the reconstruction conjecture. In: Graphs and Combinatorics. Lecture Notes in Mathematics, vol. 406, pp. 18–28. Springer, Heidelberg (1974)CrossRefGoogle Scholar
  10. 10.
    Hemaspaandra, E., Hemaspaandra, L., Radziszowski, S., Tripathi, R.: Complexity results in graph reconstruction. Discrete Applied Mathematics 152, 103–118 (2007)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Kelly, P.J.: A congruence theorem for trees. Pacific Journal of Mathematics 7, 961–968 (1957)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Kiyomi, M., Saitoh, T., Uehara, R.: Reconstruction of interval graphs. In: Ngo, H.Q. (ed.) COCOON 2009. LNCS, vol. 5609, pp. 106–115. Springer, Heidelberg (2009)Google Scholar
  13. 13.
    Kratsch, D., Hemaspaandra, L.A.: On the complexity of graph reconstruction. Mathematical Systems Theory 27, 257–273 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Ma, T.H., Spinrad, J.P.: An \(\mbox{\cal O}(n^2)\) algorithm for undirected split decomposition. Journal on Algorithms 16, 145–160 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    McKay, B.D.: Small graphs are reconstructible. Australasian Journal of Combinatorics 15, 123–126 (1997)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Schmerl, J.H., Trotter, W.T.: Critically indecomposable partially ordered sets, graphs, tournaments and other binary relational structures. Discrete Mathematics 113, 191–205 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Spinrad, J., Valdes, J.: Recognition and isomorphism of two-dimensional partial orders. In: Díaz, J. (ed.) ICALP 1983. LNCS, vol. 154, pp. 676–686. Springer, Heidelberg (1983)CrossRefGoogle Scholar
  18. 18.
    Spinrad, J.P.: Efficient Graph Representations. AMS (2003)Google Scholar
  19. 19.
    Tutte, W.T.: On dichromatic polynomials. Journal of Combinatorial Theory 2, 310–320 (1967)CrossRefGoogle Scholar
  20. 20.
    von Rimscha, M.: Reconstructibility and perfect graphs. Discrete Mathematics 47, 283–291 (1983)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Masashi Kiyomi
    • 1
  • Toshiki Saitoh
    • 1
  • Ryuhei Uehara
    • 1
  1. 1.School of Information ScienceJAISTIshikawaJapan

Personalised recommendations