WALCOM 2010: WALCOM: Algorithms and Computation pp 102-112

# A Simple Algorithm for Approximate Partial Point Set Pattern Matching under Rigid Motion

• Arijit Bishnu
• Sandip Das
• Subhas C. Nandy
• Bhargab B. Bhattacharya
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5942)

## Abstract

This paper deals with the problem of approximate point set pattern matching in 2D. Given a set P of n points, called sample set, and a query set Q of k points (k ≤ n), the problem is to find a match of Q with a subset of P under rigid motion (rotation and/or translation) transformation such that each point in Q lies in the ε-neighborhood of a point in P. The ε-neighborhood region of a point p i  ∈ P is an axis-parallel square having each side of length ε and p i at its centroid. We assume that the point set is well-seperated in the sense that for a given ε> 0, each pair of points p, p′ ∈ P satisfy at least one of the following two conditions (i) |x(p) − x(p′)| ≥ ε, and (ii) |y(p) − y(p′)| ≥ 3ε, and we propose an algorithm for the approximate matching that can find a match (if it exists) under rigid motion in O(n 2 k 2(klogk + logn)) time. If only translation is considered then the existence of a match can be tested in O(n k 2 logn) time. The salient feature of our algorithm for the rigid motion and translation is that it avoids the use of intersection of high degree curves.

## References

1. 1.
Akutsu, T.: On determining the congruence of point sets in d dimensions. Computational Geometry: Theory and Applications 9, 247–256 (1998)
2. 2.
Alt, H., Mehlhorn, K., Wagener, H., Welzl, E.: Congruence, similarity and symmetries of geometric objects. Discrete Computational Geometry 3, 237–256 (1988)
3. 3.
Alt, H., Guibas, L.: Discrete geometric shapes: Matching, interpolation, and approximation. In: Handbook of Computational Geometry, pp. 121–153. Elsevier Science Publishers B.V. North-Holland, Amsterdam (1999)Google Scholar
4. 4.
Arkin, E.M., Kedem, K., Mitchell, J.S.B., Sprinzak, J., Werman, M.: Matching points into pairwise-disjoint noise regions: combinatorial bounds and algorithms. ORSA Journal on Computing 4, 375–386 (1992)
5. 5.
Brass, P., Knauer, C.: Testing the congruence of d-dimensional point sets. Int. J. Computational Geometry and Applications 12, 115–124 (2002)
6. 6.
Cabello, S., Giannopoulos, P., Knauer, C.: On the parameterized complexity of d-dimensional point set pattern matching. Information Processing Letters 105, 73–77 (2008)
7. 7.
Chew, L.P., Goodrich, M.T., Huttenlocher, D.P., Kedem, K., Kleinberg, J.M., Kravets, D.: Geometric pattern matching under euclidean motion. Computational Geometry: Theory and Applications 7, 113–124 (1997)
8. 8.
Efrat, A., Itai, A.: Improvements on bottleneck matching and related problems using geometry. In: Proc. 12th ACM Symposium on Computational Geometry, pp. 301–310. ACM, New York (1996)Google Scholar
9. 9.
Gavrilov, M., Indyk, P., Motwani, R., Venkatasubramanian, S.: Geometric pattern matching: a performance study. In: Proc. 15th ACM Symposium on Computational Geometry, pp. 79–85. ACM, New York (1999)Google Scholar
10. 10.
Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, NY (1980)
11. 11.
Goodrich, M.T., Mitchell, J.S.B., Orletsky, M.W.: Approximate geometric pattern matching under rigid motions. IEEE Trans. PAMI 21(4), 371–379 (1999)Google Scholar
12. 12.
Heffernan, P.J., Schirra, S.: Approximate decision algorithms for point set congruence. Computational Geometry: Theory and Applications 4(3), 137–156 (1994)
13. 13.
Imai, K., Sumino, S., Imai, H.: Minimax geometric fitting of two corresponding sets of points. In: Proc. 5th ACM Symposium on Computational Geometry, pp. 266–275. ACM, New York (1989)Google Scholar
14. 14.
Indyk, P., Motwani, R., Venkatasubramanian, S.: Geometric matching under noise: combinatorial bounds and algorithms. In: Proc. 10th SIAM-ACM Symposium on Discrete Algorithms, pp. 457–465. ACM-SIAM, New York (1999)Google Scholar
15. 15.
Irani, S., Raghavan, P.: Combinatorial and experimental results for randomized point matching algorithms. In: Proc. 12th ACM Symposium on Computational Geometry, pp. 68–77. ACM, New York (1996)Google Scholar
16. 16.
Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recognition. Springer, NY (2003)
17. 17.
Mount, D.M., Netanyahu, N.S., Moigne, J.L.: Efficient algorithms for robust feature matching. Pattern Recognition 32, 17–38 (1999)
18. 18.
Rezende, P.J., Lee, D.T.: Point set pattern matching in d-dimensions. Algorithmica 13, 387–404 (1995)
19. 19.
Sharir, M., Agarwal, P.K.: Davenport-Schinzel Sequences and Their Geometric Applications. Cambridge University Press, NY (1995)

## Authors and Affiliations

• Arijit Bishnu
• 1
• Sandip Das
• 1
• Subhas C. Nandy
• 1
• Bhargab B. Bhattacharya
• 1
1. 1.Advanced Computing and Microelectronics UnitIndian Statistical InstituteKolkataIndia