Skip to main content

Actinide Thin Films as Surface Models

  • Chapter
  • First Online:
Actinide Nanoparticle Research

Abstract

Reducing the dimensionality of a material can effectively influence its properties. Compared to the knowledge on actinide bulk materials concerning their structure, behavior, and reactivity, much less is known regarding the materials with reduced dimensions (thin films, colloids, nanoparticles, clusters, isolated atoms in a matrix). The surface science laboratory installations at the Institute for Transuranium Elements (ITU) provide a combination of a reactive sputter deposition set-up for thin film production with photoemission spectroscopy instrumentation. This allows for characterization of the surface elemental composition of thin film materials, to draw conclusions regarding the chemical environment of the constitutive elements and to gather information on the electronic structure of the materials. X-ray photoelectron spectroscopy (XPS), probing the sample up to tens of monolayers (ML) deep, and UV photoelectron spectroscopy (UPS), with a probing depth of one to four MLs, are used. In this chapter, we focus on the investigation of surface reactions, and some examples are given to show how the electronic structure of 5f materials is influenced by reducing the materials’ dimensions. Additional characterization methods are applied to show that the films can also serve as structural models: characterization of the film surfaces by SEM–EDX (scanning electron microscopy combined with energy dispersive X-ray spectroscopy) and AFM (atomic force microscopy) are carried out. In the case of bulk characterization, X-ray diffraction (XRD) is used to give insight in crystallinity. The designed thin film models are used in gas adsorption (O2, Oatom, H2, Hatom) and electrochemical experiments probing their redox behavior. Specific examples are presented to illustrate this approach to mechanistic understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Somorjai GA, Park JY (2009) Concepts, instruments, and model systems that enabled the rapid evolution of surface science. Surf Sci 603:1293–1300

    Article  CAS  Google Scholar 

  2. Somorjai GA, Contreras AM, Montano M, Rioux RM (2006) Clusters, surfaces, and catalysis. PNAS 103:10577–10583

    Article  CAS  Google Scholar 

  3. Bubert H, Riviere JC (2002) Photoelectron spectroscopy. In: Bubert H, Jenett H (eds.) Surface and thin film analysis, 1st edn. Wiley-VCH, Weinheim

    Chapter  Google Scholar 

  4. Briggs D, Seah MP (1990) Practical surface analysis. Wiley, Chichester

    Google Scholar 

  5. Seah MP, Dench WA (1979) Quantitative electron spectroscopy of surfaces: a standard data base for electron inelastic mean free paths in solids. Surf Interf Anal 1:2–11

    Article  CAS  Google Scholar 

  6. Yeh JJ, Lindau I (1985) Atomic subshell photoionisation cross-sections and asymmetry parameters: 1 ≤ Z ≤ 103. Atomic Data Nucl Data Tables 32:1–155

    Article  CAS  Google Scholar 

  7. Römer J, Plaschke M, Beuchle G, Kim JI (2003) In situ investigation of U(IV)-oxide surface dissolution and remineralization by electrochemical AFM. J Nucl Mater 322:80–86

    Article  Google Scholar 

  8. Horcas I, Fernandez R, Gomez-Rodriguez JM, Colchero J, Gomez-Herrero J, Baro AM (2007) WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum 78:013705

    Article  CAS  Google Scholar 

  9. Stumpf S, Seibert A, Gouder T, Huber F, Wiss T, Römer J (2009) Development of fuel-model interfaces: investigations by XPS, TEM, SEM and AFM. J Nucl Mater 385:208–211.

    Article  CAS  Google Scholar 

  10. Teterin YuA, Kulakov VM, Baev AS, Nevzorov NB, Melnikov IV, Streltsov VA, Mashirov LG, Suglobov DN, Zelenkov AG (1981) A study of synthetic and natural uranium oxides by X-ray photoelectron spectroscopy. Phys Chem Min 7:151–158

    Google Scholar 

  11. van den Berghe S, Laval JP, Gaudreau B, Terryn H, Verwerft M (2000) XPS investigationson cesium uranates: mixed valency behaviourof uranium. J Nucl Mater 277:28–36

    Article  Google Scholar 

  12. Bera S, Sali S, Sampath SV, Narasimhan V, Venugopal V (1998) Oxidation state of uranium: an XPS study of alkali and alkaline earth uranates. J Nucl Mater 255:26–33

    Article  CAS  Google Scholar 

  13. Santos BG, Nesbitt HW, Noel JJ, Shoesmith DW (2004) X-ray photoelectron spectroscopy study of anodically oxidized SIMFUEL surfaces. Electrochim Acta 49:1863–1873

    Article  CAS  Google Scholar 

  14. Colmenares CA (1984) Oxidation mechanisms and catalytic properties of the actinides. Prog Solid State Chem 15:257–364

    Article  CAS  Google Scholar 

  15. Allen GC, Tucker PM, Lewis RA (1984) X-ray photoelectron spectroscopy study of the initial oxidation of uranium metal in oxygen-water-vapour mixtures. J Chem Soc Faraday Trans 80:991–1000

    Article  CAS  Google Scholar 

  16. Wagner CD, Naumkin AV, Kraut-Vass A, Allison JW, Powell CJ, Rumble JR Jr (2003) NIST X-ray photoelectron spectroscopy database NIST. Standard Reference Database 20, Version 3.5. http://srdata.nist.gov/xps

  17. Yamazaki T, Kotani A (1991) Systematic analysis of 4f core photoemission spectra in actinide oxides. J Phys Soc J 60:49–52

    Article  CAS  Google Scholar 

  18. Tura JM, Regull P, Victori L, de Castellar DM (1988) XPS and IR (ATR) analysis of Pd oxide films obtained by electrochemical methods. Surf Interf Anal 11:447–449

    Article  CAS  Google Scholar 

  19. Genesca J, Victori L (1981) Titel. Rev Coat Corros 4:325–348

    CAS  Google Scholar 

  20. Sauerbrey GZ (1959) Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Zeitsch Phys 155:206–222

    Article  CAS  Google Scholar 

  21. Seibert A, Wegen DH, Gouder T, Huber F, Römer J, Wiss T, Glatz J-P (2010) The use of the electrochemical quartz crystal microbalance (EQCM) in corrosion studies of UO2 thin film models. RA 98:647–654

    Google Scholar 

  22. Gouder T, Havela L, Wastin F, Rebizant J (2001) Evidence for the 5 f localization in thin Pu layers. Europhys Lett 55:705–711

    Article  CAS  Google Scholar 

  23. Gouder T, Wastin F, Rebizant J, Havela L (2000) 5-f electron localization in PuSe and PuSb. Phys Rev Lett 84:3378–3381

    Article  CAS  Google Scholar 

  24. Gouder T, Eloirdi R, Rebizant J, Boulet P, Huber F (2005) Multiplet structure in Pu-based compounds: a photoemission case study of PuSix (0.5<x<2) films. Phys Rev B 71:165101

    Article  Google Scholar 

  25. Eloirdi R, Gouder T, Korzhavyi P, Wastin F, Rebizant J (2004) Dilution effect on the U-5f states: U in an Ag matrix. J Alloys Compd 386:70–74

    Article  Google Scholar 

  26. Naegele JR, Ghijsen J (1985) Localisation and hybridisation of 5f States in the metallic and ionic bond as investigated by photoelectron spectroscopy. In: Manes L (ed.) Actinides – chemistry and physical properties, structure and bonding 59/60. Springer, Berlin

    Google Scholar 

  27. Gouder T, Havela L, Rebizant J (2005) Photoemission study of δ-plutonium with Am doping. Physica B 359–361:1090–1092

    Google Scholar 

  28. Gouder T, Seibert A, Havela L, Rebizant J (2007) Search for higher oxides of Pu: a photoemission study. Surf Sci 601:L77–L80

    Article  CAS  Google Scholar 

  29. Seibert A, Gouder T, Huber F (2009) Formation and stability of actinide oxides: a valence band photoemission study. Radiochim Acta 97:247–250

    Article  CAS  Google Scholar 

  30. Zangwill A (1988) Physics at surfaces. University Press, Cambridge

    Google Scholar 

  31. Wandelt K (1982) Photoemission studies of adsorbed oxygen and oxide layers. Surf Sci Rep 2:1–21

    Article  CAS  Google Scholar 

  32. Naegele JR, Cox LE, Ward JW (1987) Photoelectron spectroscopy (UPS/XPS) study of Np2O3 formation on the surface of neptunium metal. Inorg Chim Acta 139:327

    Article  CAS  Google Scholar 

  33. Seibert A, Gouder T, Huber F (2009) Reaction of Neptunium with molecular and atomic oxygen: formation and stability of surface oxides. J Nucl Mater 389:470–478

    Article  CAS  Google Scholar 

  34. Seibert A, Gouder T, Huber F (2010) Interaction of PuO2 thin films with water. Radiochim Acta 98:647–654. doi: 10.1524/ract.2010.1765

    Google Scholar 

  35. Stumpf S, Seibert A, Gouder T, Huber F, Wiss T, Römer J, Denecke MA (2010) Development of fuel-model interfaces: characterisation of Pd containing UO2 thin films. J Nucl Mater 397:19–26

    Article  CAS  Google Scholar 

  36. Carbol P, Fors P, Gouder T, Spahiu K (2009) Hydrogen suppresses UO2 corrosion. Geochim Cosmochim Acta 73:4366–4375

    Article  CAS  Google Scholar 

  37. Nilsson S, Jonsson M (2008a) On the catalytic effects of UO2(s) and Pd(s) on the reaction between H2O2 and H2 in aqueous solution. J Nucl Mater 372:160–163

    Google Scholar 

  38. Nilsson S, Jonsson M (2008b) On the catalytic effect of Pd(s) on the reduction of UO 2+2 with H2 in aqueous solution. J Nucl Mater 374:290–292

    Article  CAS  Google Scholar 

  39. Trummer M, Nilsson S, Jonsson M (2008) On the effects of fission product noble metal inclusions on the kinetics of radiation induced dissolution of spent nuclear fuel. J Nucl Mater 378:55–59

    Google Scholar 

  40. Trummer M, Roth O, Jonsson M (2009) H2 inhibition of radiation induced dissolution of spent nuclear fuel. J Nucl Mater 383:226–230

    Article  CAS  Google Scholar 

  41. Stakebake JL, Larson DT, Haschke JM (1993) Characterisation of the plutonium-water reaction II: formation of a binary oxide containing Pu(VI). J Alloys Compd 202:251–263

    Article  CAS  Google Scholar 

  42. Farr JD, Schulze RK, Neu MP (2004) Surface chemistry of Pu oxides. J Nucl Mater 328:124–136

    Article  CAS  Google Scholar 

  43. Waber JT (1967) Corrosion and oxidation. In: Wick OJ (ed.) Plutonium handbook–a guide to technology, Vol. 1. Gordon and Breach, New York

    Google Scholar 

  44. Colmenares CA (1975) The oxidation of Thorium, Uranium and Plutonium. Prog Solid State Chem 9:139–239

    Article  CAS  Google Scholar 

  45. Haschke JM, Allen TH, Morales LA (2000) Reaction of plutonium dioxide with water: formation and properties of PuO2+x. Science 287:285–287

    Article  CAS  Google Scholar 

  46. Haschke JM, Allen TH (2002) Equilibrium and thermodynamic properties of the PuO2+x solid solution. J Alloys Compd 336:124–131

    Google Scholar 

  47. Neck V, Altmaier M, Fanghänel Th (2007) Thermodynamic data for hydrous and anhydrous PuO2+x(s). J Alloys Comp 444–445:464–469

    Google Scholar 

  48. Neck V, Altmaier M, Seibert A, Yun JI, Marquardt CM, Fanghänel Th (2007) Solubility and redox reactions of Pu(IV) hydrous oxide: evidence for the formation of PuO2+x(s, hyd). Radiochim Acta 95:193–207

    Article  CAS  Google Scholar 

  49. Veal BW, Lam DJ, Diamond H, Hoekstra HR (1977) X-ray photoelectron spectroscopy study of oxides of the transuranium elements Np, Pu, Am, Cm, Bk, and Cf. Phys Rev B 15:2929–2942

    Article  CAS  Google Scholar 

  50. Dupin J-C, Gonbeau D, Vinatier P, Levasseur A (2000) Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys Chem Chem Phys 2:1319–1324

    Article  CAS  Google Scholar 

  51. Henderson MA (2002) The interaction of water with solid surfaces: fundamental aspects revisited. Surf Sci Rep 46:1–308

    Article  CAS  Google Scholar 

  52. Spinks JWT, Woods RJ (1990) An introduction to radiation chemistry. Wiley, New York

    Google Scholar 

  53. Cooper MJ (1982) The analysis of powder diffraction data. Acta Crystallogr B 38:264–269

    Article  Google Scholar 

  54. Gronvold FH (1948) Crystal structure of uranium oxide. (U3O8) Nature 162:69–70

    Article  CAS  Google Scholar 

  55. Kim KS, Gossman AF, Winograd N (1974) X-ray photoelectron spectroscopic studies of palladium oxides and the palladium-oxygen electrode. Anal Chem 46:197–200

    Article  CAS  Google Scholar 

  56. Bolzan AE, Chialvo AC, Arvia AJ (1984) Fast faradaic processes observed during the potentiodynamic polarization of polycrystalline palladium in acid electrolyte. J Electroanal Chem 179:71–82

    Article  CAS  Google Scholar 

  57. Miserque F, Gouder T, Wegen DH, Bottomley PDW (2001) Use of UO2 films for electrochemical studies. J Nucl Mater 298:280–290

    Article  CAS  Google Scholar 

  58. Shoesmith DW, Sunder S, Hocking WH (1994) Electrochemistry of UO2 nuclear fuel. In: Lipkowski J, Ross PN (eds.) Electrochemistry of novel materials. VCH, New York

    Google Scholar 

  59. Kibler LA, El-Aziz AM, Kolb DM (2003) Electrochemical behaviour of pseudomorphic overlayers: Pd on Au(111). J Mol Catal A Chem 199:57–63

    Article  CAS  Google Scholar 

  60. Martin MH, Lasia A (2008) Study of the hydrogen absorption in Pd in alkaline solution. Electrochim Acta 53:6317–6322

    Article  CAS  Google Scholar 

  61. Duncan H, Lasia A (2007) Mechanism of hydrogen adsorption/absorption at thin Pd layers on Au(111). Electrochim Acta 52:6195–6205

    Article  CAS  Google Scholar 

  62. Naohara H, Ye S, Uosaki K (2000) Electrocatalytic reactivity for oxygen reduction at epitaxilly grown Pd thin layers of various thickness on Au(111) and Au(100). Electrochim Acta 45:3305–3309

    Article  CAS  Google Scholar 

  63. Cao Y, Chen Z-X (2006) Theoretical studies on the adsorption and decomposition of H2O on Pd(111) surface. Surf Sci 600:4572–4583

    Article  CAS  Google Scholar 

  64. Shoesmith DW (2000) Fuel corrosion processes under waste disposal conditions. J Nucl Mater 282:1–31

    Article  CAS  Google Scholar 

Download references

Acknowledgments

S. Stumpf would like to thank the European Commission for a grant in the framework of the program “Mobility for young researchers.” The research leading to part of these results received funding from the European Atomic Energy Community Seventh Framework Program (FP7/2007-2013) under grant agreement No 212287, Collaborative Project Recosy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Seibert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Seibert, A., Stumpf, S., Gouder, T., Schild, D., Denecke, M.A. (2011). Actinide Thin Films as Surface Models. In: Kalmykov, S., Denecke, M. (eds) Actinide Nanoparticle Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11432-8_10

Download citation

Publish with us

Policies and ethics