Skip to main content

Actinide-Nanoparticle Interaction: Generation, Stability and Mobility

  • Chapter
  • First Online:

Abstract

Actinide ions are widely considered immobile under environmental conditions relevant to their disposal notably under reducing conditions prevalent in subsoil systems. Colloid formation is, however, known to increase their mobility. Observations of this in environmental systems are regularly reported. Different processes may lead to actinide colloid formation, by either generation of polymeric oxide/hydroxide nanoparticles or sorption to already existing or neo-formed ground water colloids. In order to assess actinide mobilization by colloidal species, the cascade of individual colloidal processes under given geochemical conditions must be considered and quantified: colloid formation, actinide–colloid interaction, colloid stabilization and migration. This chapter describes and discusses actinide colloid reactions with a focus on the underlying mechanisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albarran N., Missana T., Alonso U., Garcia-Gutierrez M., and Lopez-Torrubia T. (2009) Dynamic study of bentonite colloid retention in a smooth granite fracture under unfavorable electrostatic conditions. 4th Annual Workshop Proceeding of integrated project “Fundamental processes of Radionuclide Migration” – 6th EC FP IP FUNMIG, FZKA report 7461, 421–428.

    Google Scholar 

  • Alonso U., Missana T., Patelli A., and Rigato V. (2007a) Bentonite colloid diffusion through the host rock of a deep geological repository. Physics and Chemistry of the Earth 32(1–7), 469–476.

    Google Scholar 

  • Alonso U., Missana T., Patelli A., Rigato V., and Ravagnan J. (2007b) Colloid diffusion in crystalline rock: An experimental methodology to measure diffusion coefficients and evaluate colloid size dependence. Earth and Planetary Science Letters 259(3–4), 372–383.

    Article  CAS  Google Scholar 

  • Alonso U., Missana T., and Garcia-Gutierrez M. (2008) Experimental approach to study the bentonite colloid generation source term in different geochemical conditions. 3rd Annual workshop Proceedings of IP FUNMIG, NDA report, 329–336.

    Google Scholar 

  • Alonso U., Missana T., Patelli A., Ceccato D., Albarran N., Garcia-Gutierrez M., Lopez-Torrubia T., and Rigato V. (2009) Quantification of Au nanoparticles retention on a heterogeneous rock surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects 347(1–3), 230–238.

    Article  CAS  Google Scholar 

  • Artinger R., Kienzler B., Schuessler W., Kim J.I. (1998) Effects of humic substances on the Am-241 migration in a sandy aquifer: column experiments with Gorleben groundwater/sediment systems. J. Contam. Hydrol., 35, 261–275.

    Article  CAS  Google Scholar 

  • Artinger R., Buckau G., Geyer S., Wolf M., Kim J. I., and Fritz P. (1998a) Characterization of humic and fulvic acids from the Gorleben aquifer system by GPC with UV/Vis and fluorescence detection. 9th international meeting of the International Humic Substance Society.

    Google Scholar 

  • Artinger R., Kienzler B., Schüssler W., and Kim J. I. (1998b) Effects of humic substances on the 241Am migration in a sandy aquifer: Column experiments with Gorleben groundwater/sediment systems. Journal of Contaminant Hydrology 35, 261–275.

    Article  CAS  Google Scholar 

  • Artinger R., Buckau G., Geyer S., Fritz P., Wolf M., and Kim J. I. (2000) Characterization of groundwater humic substances: Influence of sedimentary organic carbon. Applied Geochemistry 15(1), 97–116.

    Article  CAS  Google Scholar 

  • Artinger R., Rabung T., Kim J. I., Sachs S., Schmeide K., Heise K. H., Bernhard G., and Nitsche H. (2002a) Humic colloid-borne migration of uranium in sand columns. Journal of Contaminant Hydrology 58(1–2), 1–12.

    Article  CAS  Google Scholar 

  • Artinger R., Schuessler W., Schäfer T., and Kim J. I. (2002b) A kinetic study of Am(III)/humic colloid interactions. Environmental Science & Technology 36(20), 4358–4363.

    Article  CAS  Google Scholar 

  • Artinger R., Schuessler W., Scherbaum F., Schild D., and Kim J. I. (2002c) Am-241 migration in a sandy aquifer studied by long-term column experiments. Environmental Science & Technology 36(22), 4818–4823.

    Article  CAS  Google Scholar 

  • Artinger R., Buckau G., Zeh P., Geraedts K., Vancluysen J., Maes A., and Kim J. I. (2003) Humic colloid mediated transport of tetravalent actinides and technetium. Radiochimica Acta 91(12), 743–750.

    Article  CAS  Google Scholar 

  • Backhus D. A., Ryan J. N., Groher D. M., MacFarlane J. K., and Gschwend P. M. (1993) Sampling colloids and colloid associated contaminants in ground water. Ground Water 31(3), 466–479.

    Article  CAS  Google Scholar 

  • Baik M. H., Cho W. J., and Hahn P. S. (2007) Erosion of bentonite particles at the in-terface of a compacted bentonite and a fractured granite. Engineering Geology 91(2–4), 229–239.

    Article  Google Scholar 

  • Barcelona M. J., Varljen M. D., Puls R. W., and Kaminski D. (2005) Ground water-purging and sampling methods: History vs. hysteria. Ground water Monitoring and Remediation 25, 52–62.

    Article  CAS  Google Scholar 

  • Bekhit H. M., Hassan A. E. (2005) Two-dimensional modeling of contaminant transport in porous media in the presence of colloids. Adv. in Water Res., 28, 1320–1335.

    Article  CAS  Google Scholar 

  • Benedetti M. F., Milne C. J., Kinniburgh D. G., Vanriemsdijk W. H., and Koopal L. K. (1995) Metal-ion binding to humic substances - application of the nonideal competitive adsorption model. Environmental Science & Technology 29(2), 446–457.

    Article  CAS  Google Scholar 

  • BGR (1991) Untertägige geowissenschaftliche Erkundung des Standortes Gorleben. Bundesanstalt für Geowissenschaften und Rohstoffe.

    Google Scholar 

  • Bouby M., Geckeis H., Schäfer T., Luützenkirchen J., Seher H., Bauer A., Plaschke M., Hauser W., and Kienzler B. (2008) Laboratory study on colloid stability and radionuclide-colloid interaction under Äspö groundwater conditions. 3rd Annual workshop Proceedings of IP FUNMIG, NDA report, 391–400.

    Google Scholar 

  • Bouby M., Filby A., Geckeis H., Geyer F., Götz R., Hauser W., Huber F., Kienzler B., Kunze P., Küntzel M., Lützenkirchen J., Noseck U., Plaschke M., Pudewills A., Schäfer T., Seher H., and Walther C. (2010) Colloid/Nanoparticle formation and mobility in the context of deep geological nuclear waste disposal (Project KOLLORADO-1; Final report). In FZKA report 7515, Vol. FZKA report 7515 (ed. T. Schäfer and U. Noseck), pp. 210. Forschungszentrum Karlsruhe.

    Google Scholar 

  • Boutt D. F., Grasselli G., Fredrich J. T., Cook B. K., Williams J. R. (2006) Trapping zones: The effect of fracture roughness on the directional anisotropy of fluid flow and colloid transport in a single fracture. Geophys. Res. Letters, 33, L21402.

    Article  Google Scholar 

  • Bradbury M. H. and Baeyens B. (2005) Modelling the sorption of Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Eu(III), Am(III), Sn(IV), Th(IV), Np(V) and U(VI) on montmorillonite: Linear free energy relationships and estimates of surface binding constants for some selected heavy metals and actinides. Geochimica Et Cosmochimica Acta 69, 875–892.

    Article  CAS  Google Scholar 

  • Bradbury M. H. and Baeyens B. (2009) Sorption modelling on illite. Part II: Actinide sorption and linear free energy relationships. Geochimica Et Cosmochimica Acta 73(4), 1004–1013.

    Article  CAS  Google Scholar 

  • Bryan N. D., Jones D. M., Keepax R. E., Farrelly D. H. (2006) Non-exchangeable binding of radionuclides by humic substances: a chemical analogue. In Advances in Actinide Science, (eds. I. May, N. D. Bryan and R. Alvarez), Royal Society of Chemistry, Cambridge, UK.

    Google Scholar 

  • Bryan N. D., Abrahamsen L., Evans N., Warwick P., Buckau G., Wenig L., Van Riemsdijk W. H. (2011) The effects of humic substances on the transport of radionuclides: recent improvements in the prediction of behavior and understanding of mechanisms. Appl. Geochem., accepted.

    Google Scholar 

  • Buck E. C. and Bates J. K. (1999) Microanalysis of colloids and suspended particles from nuclear waste glass alteration. Applied Geochemistry 14(5), 635–653.

    Article  CAS  Google Scholar 

  • Buck E. C., Finn P. A., and Bates J. K. (2004) Electron energy-loss spectroscopy of anomalous plutonium behavior in nuclear waste materials. Micron 35(4), 235–243.

    Article  CAS  Google Scholar 

  • Buckau G. (1991) Komplexierung von Americium (III) mit Huminstoffen in natürlichen Grundwässern. PhD Freie Universität Berlin.

    Google Scholar 

  • Buckau G. (2000) Effects of Humic Substances on the Migration of Radionuclides: Complexation and Transport of Actinides (HUMICS), Final Report, Report EUR 19610 EN.

    Google Scholar 

  • Buckau G. (2004) Humic substances in performance assessment of nuclear waste disposal: Actinide and iodine migration in the far-field: 2nd technical progress report pp. 350. Forschungszentrum Karlsruhe.

    Google Scholar 

  • Buckau G. (2005) Origin, stability and mobility of humic colloids in Äspö groundwater: Feasibility study. The Colloid investigations conducted at the Äspö Hard Rock laboratory during the years 2000–2004.

    Google Scholar 

  • Buckau G. (2006) Humic Substances in Performance Assessment of Nuclear Waste Disposal: Actinide and Iodine Migration in the Far-Field (HUPA), Final Report, Report EUR 21928.

    Google Scholar 

  • Buckau G., Kim J. I., Klenze R., Rhee D. S., and Wimmer H. (1992) A comparative spectroscopy study of the fulvate complexation of trivalent transuraniums ions. Radiochimica Acta 57, 105–111.

    CAS  Google Scholar 

  • Buckau G., Artinger R., Fritz P., Geyer S., Kim J. I., and Wolf M. (2000) Origin and mobility of humic colloids in the Gorleben aquifer system. Applied Geochemistry 15(2), 171–179.

    Article  CAS  Google Scholar 

  • Buesseler K. O., Hassellov M., and Dai M. (2003) Comment on “Trace metal levels in uncontaminated groundwater of a coastal watershed: Importance of colloidal forms”. Environmental Science & Technology 37(3), 657–658.

    Article  CAS  Google Scholar 

  • Catalano J. G. and Brown G. E. (2005) Uranyl adsorption onto montmorillonite: Evaluation of binding sites and carbonate complexation. Geochimica Et Cosmochimica Acta 69(12), 2995–3005.

    Article  CAS  Google Scholar 

  • Chen G. and Flury M. (2005) Retention of mineral colloids in unsaturated porous media as related to their surface properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects 256(2–3), 207–216.

    Article  CAS  Google Scholar 

  • Chheda P., Grasso D., and van Oss C. J. (1992) Impact of ozone on the stability of montmorillionite suspensions. Journal of Colloid and Interface Science 153, 226–236.

    Article  CAS  Google Scholar 

  • Chisholm-Brause C. J., Berg J. M., Little K. M., Matzner R. A., and Morris D. E. (2004) Uranyl sorption by smectites: spectroscopic assessment of thermodynamic modeling. Journal of Colloid and Interface Science 277(2), 366–382.

    Article  CAS  Google Scholar 

  • Choppin G. R. and Clark S. B. (1991) The kinetic interactions of metal-ions with humic acids. Marine Chemistry 36(1–4), 27–38.

    Article  CAS  Google Scholar 

  • Chung K. H., Klenze R., Park K. K., Paviet-Hartmann P., and Kim J. I. (1998) A study of the surface sorption process of Cm(III) on silica by time-resolved laser fluorescence spectroscopy (I). Radiochimica Acta 82, 215–219.

    CAS  Google Scholar 

  • Claret F., Schäfer T., Brevet J., and Reiller P. E. (2008) Fractionation of Suwannee river fulvic acid and aldrich humic acid on α-Al2O3: Spectroscopic evidence. Environmental Science & Technology 42(23), 8809–8815.

    Article  CAS  Google Scholar 

  • Contardi J. S., Turner D. R., and Ahn T. M. (2001) Modeling colloid transport for performance assessment. Journal of Contaminant Hydrology 47(2–4), 323–333.

    Article  CAS  Google Scholar 

  • Courdouan A., Christl I., Meylan S., Wersin P., and Kretzschmar R. (2007a) Characterization of dissolved organic matter in anoxic rock extracts and in situ pore water of the Opalinus Clay. Applied Geochemistry 22(12), 2926–2939.

    Article  CAS  Google Scholar 

  • Courdouan A., Christl I., Meylan S., Wersin P., and Kretzschmar R. (2007b) Isolation and characterization of dissolved organic matter from the Callovo-Oxfordian formation. Applied Geochemistry 22, 1537–1548.

    Article  CAS  Google Scholar 

  • Dähn R., Scheidegger A. M., Manceau A., Curti E., Baeyens B., Bradbury M. H., and Chateigner D. (2002) Th uptake on montmorillonite: A powder and polarized extended X-ray absorption fine structure (EXAFS) study. Journal of Colloid and Interface Science 249(1), 8–21.

    Article  CAS  Google Scholar 

  • Dai M., Kelley J. M., and Buesseler K. O. (2002) Sources and migration of plutonium in groundwater at the Savannah River Site. Environmental Science & Technology 36(17), 3690–3699.

    Article  CAS  Google Scholar 

  • Dai M., Buesseler K. O., and Pike S. M. (2005) Plutonium in groundwater at the 100K-Area of the U.S. DOE Hanford Site. Journal of Contaminant Hydrology 76(3–4), 167–189.

    Article  CAS  Google Scholar 

  • Dearlove J. P. L., Longworth G., Ivanovich M., Kim J. I., Delakowitz B., and Zeh P. (1991) A study of groundwater-colloids and their geochemical interactions with natural radionuclides in Gorleben aquifer systems. Radiochimica Acta 52–53, 83–89.

    Google Scholar 

  • Degueldre C., Grauer R., Laube A., Oess A., and Silby H. (1996a) Colloid properties in granitic groundwater systems.2. Stability and transport study. Applied Geochemistry 11(5), 697.

    Article  CAS  Google Scholar 

  • Degueldre C., Pfeiffer H.-R., Alexander W., Wernli B., and Bruetsch R. (1996b) Colloid properties in granitic groundwater systems. I: Sampling and characterisation. Applied Geochemistry 11, 677–695.

    Article  CAS  Google Scholar 

  • Degueldre C., Scholtis A., and Thomas B. (1998) Opalinus clay groundwaters and colloids. A sampling exercise at Mt. Terri (June/July 197). Analytical results.

    Google Scholar 

  • Degueldre C., Triay I., Kim J.I., Vilks P., Laaksoharju M., Miekeley N. (2000) Groundwater colloid properties: a global approach. Appl. Geochem., 15, 1043–1051.

    Article  CAS  Google Scholar 

  • Degueldre C., Reed D., Kropf A. J., and Mertz C. (2004) XAFS study of americium sorbed onto groundwater colloids. Journal of Synchrotron Radiation 11, 198–203.

    Article  CAS  Google Scholar 

  • Delos A., Walther C., Schäfer T., and Buchner S. (2008) Size dispersion and colloid mediated radionuclide transport in a synthetic porous media. Journal of Colloid and Interface Science 324(1–2), 212–215.

    Article  CAS  Google Scholar 

  • Denecke M. A., Bublitz D., Kim J. I., Moll H., and Farkes I. (1999) EXAFS investigation of the interaction of hafnium and thorium with humic acid and Bio-Rex70. Journal of Synchrotron Radiation 6, 394–396.

    Article  CAS  Google Scholar 

  • Denecke M. A., Marquardt C. M., Rothe J., Dardenne K., and Jensen M. P. (2002) XAFS studies of actinide coordination structure in Np(IV)-fulvates. J. Nuclear Science Technology 3(Suppl.), 410–413.

    Google Scholar 

  • DeNovio N. M., Saiers J. E., and Ryan J. N. (2004) Colloid movement in unsaturated porous media: recent advances and future directions. Vadose Zone Journal 3, 338–351.

    CAS  Google Scholar 

  • Fernandes M. M., Stumpf T., Baeyens B., Walther C., and Bradbury M. H. (2010) Spectroscopic identification of ternary Cm-carbonate surface complexes. Environmental Science & Technology 44(3), 921–927.

    Article  CAS  Google Scholar 

  • Filby A. (2009) Interaction of colloids with mineral surfaces: a microscopical and nanoscopical approach. PhD thesis, Universität Fridericiana Karlsruhe (TH).

    Google Scholar 

  • Filby A., Plaschke M., Geckeis H., and Fanghänel T. (2008) Interaction of latex colloids with mineral surfaces and Grimsel granodiorite. Journal of Contaminant Hydrology 102(3–4), 273–284.

    Article  CAS  Google Scholar 

  • Filby A., Plaschke M., Geckeis H., and Bosbach D. (2009) Interaction of latex colloids with mineral surfaces and Grimsel granodiorite. 4th Annual Workshop Proceeding of integrated project “Fundamental processes of Radionuclide Migration” – 6th EC FP IP FUNMIG, FZKA report 7461, 285–290.

    Google Scholar 

  • Gates W. P., Bouazza A., and Churchman G. J. (2009) Bentonite clay keeps pollutants at Bay. Elements 5(2), 105–110.

    Article  CAS  Google Scholar 

  • Geckeis H., Rabung T., Manh T. N., Kim J. I., and Beck H. P. (2002) Humic colloid-borne natural polyvalent metal ions: Dissociation experiment. Environmental Science & Technology 36(13), 2946–2952.

    Article  CAS  Google Scholar 

  • Geckeis H., Schäfer T., Hauser W., Rabung T., Missana T., Degueldre C., Möri A., Eikenberg J., Fierz T., and Alexander W. R. (2004) Results of the Colloid and Radionuclide Retention experiment (CRR) at the Grimsel Test Site (GTS), Switzerland – Impact of reaction kinetics and speciation on radionuclide migration-. Radiochimica Acta 92(9–11), 765–774.

    Article  CAS  Google Scholar 

  • Hartmann E., Brendebach B., Polly R., Geckeis H., Stumpf Th. (2011) Characterization and quantification of Sm(III)/ and Cm(III)/clay mineral outer-sphere species by TRLFS in D2O and EXAFS studies. J. Coll. Interface Sci., 353, 562–568.

    Article  CAS  Google Scholar 

  • Hauser W., Geckeis H., Kim J. I., and Fierz T. (2002) A mobile laser-induced breakdown detection system and its application for the in situ-monitoring of colloid migration. Colloids and Surfaces A: Physicochemical and Engineering Aspects 203(1–3), 37–45.

    Article  CAS  Google Scholar 

  • Hauser W., Geckeis H., Götz R., Noseck U., and Laciok A. (2007) Colloid detection in natural ground water from Ruprechtov by laser-induced breakdown detection. In 2nd Annual Workshop Proceeding of integrated project “Fundamental processes of Radionuclide Migration” – 6th EC FP IP FUNMIG (ed. G. Buckau, B. Kienzler, L. Duro, and V. Montoya), pp. 367–373.

    Google Scholar 

  • Heidmann I., Christl I., and Kretzschmar R. (2005) Sorption of Cu and Pb to kaolinite-fulvic acid colloids: Assessment of sorbent interactions. Geochimica Et Cosmochimica Acta 69(7), 1675–1686.

    Article  CAS  Google Scholar 

  • Hetzel F. and Doner H. E. (1993) Some colloidal properties of beidellite – Comparison with low and high charge montmorillonites. Clays and Clay Minerals 41(4), 453–460.

    Article  CAS  Google Scholar 

  • Hoek E. M. V. and Agarwal G. K. (2006) Extended DLVO interactions between spherical particles and rough surfaces. Journal of Colloid and Interface Science 298(1), 50–58.

    Article  CAS  Google Scholar 

  • Hoek E. M. V., Bhattacharjee S., and Elimelech M. (2003) Effect of membrane surface roughness on colloid-membrane DLVO interactions. Langmuir 19(11), 4836–4847.

    Article  CAS  Google Scholar 

  • Honeyman B. D. (1999) Colloidal culprits in contamination. Nature 397, 23–24.

    Article  CAS  Google Scholar 

  • Huittinen N., Rabung T., Lutzenkirchen J., Mitchell S. C., Bickmore B. R., Lehto J., and Geckeis H. (2009) Sorption of Cm(III) and Gd(III) onto gibbsite, alpha-Al(OH)(3): A batch and TRLFS study. Journal of Colloid and Interface Science 332(1), 158–164.

    Article  CAS  Google Scholar 

  • Huittinen N., Rabung T., Andrieux P., Lehto J., Geckeis H. (2010) A comparative batch sorption and time-resolved laser fluorescence spectroscopy study on the sorption of Eu(III) and Cm(III) on synthetic and natural kaolinite. Radiochim. Acta, 98, 613–620.

    Article  CAS  Google Scholar 

  • Hummel W. (2008) Radioactive contaminants in the subsurface: The influence of complexing ligands on trace metal speciation. Monatshefte Fur Chemie 139(5), 459–480.

    Article  CAS  Google Scholar 

  • Ibaraki M. and Sudicky E. A. (1995) Colloid-facilitated contaminant transport in discretely fractured porous media.1. Numerical formulation and sensitivity analysis. Water Resources Research 31(12), 2945–2960.

    Article  CAS  Google Scholar 

  • Ionescu A., Maes N., and Mallants D. (2008) Modelling transport of C-14-labelled Natural Organic Matter (NOM) in Boom Clay. Scientific Basis for Nuclear Waste Management Xxxi 1107, 629–636.

    Google Scholar 

  • Kaminski M. D., Goldberg M. M., and Mertz C. J. (2005) Colloids from the aqueous corrosion of aluminium-based nuclear fuel. Journal of Nuclear Materials 347(1–2), 88–93.

    Article  CAS  Google Scholar 

  • Kaplan D., Bertsch P., Adriano D., and Miller W. P. (1993) Soil-borne mobile colloids as influenced water flow and organic carbon. Environmental Science & Technology 27(6), 1193–1200.

    Article  CAS  Google Scholar 

  • Kersting A. B., Efurd D. W., Finnegan D. L., Rokop D. J., Smith D. K., and Thompson J. L. (1999) Migration of plutonium in ground water at the Nevada Test Site. Nature 397, 56–59.

    Article  CAS  Google Scholar 

  • Kienzler B., Vejmelka P., Romer J., Fanghänel E., Jansson M., Eriksen T. E., and Wikberg P. (2003) Swedish-German actinide migration experiment at ASPO hard rock laboratory. Journal of Contaminant Hydrology 61(1–4), 219–233.

    Article  CAS  Google Scholar 

  • Kim J. I. (1986) Chemical behaviour of transuranic elements in natural aquatic systems. In Handbook on the Physics and Chemistry of the Actinide (ed. A. I. Freeman and C. Keller), pp. Chap. 8. Elsevier Science Publishers.

    Google Scholar 

  • Kim J. I. (1991) Actinide colloid generation in groundwater. Radiochimica Acta 52/53, 71.

    Google Scholar 

  • Kim J. I. (1994) Actinide colloids in natural aquifer systems. Materials Research Society Bulletin 19(12), 47–53.

    CAS  Google Scholar 

  • Kim J. I. (2006) Significance of actinide chemistry for the long-term safety of waste disposal. Nuclear Engineering and Technology 38, 459–482.

    CAS  Google Scholar 

  • Kim J. I. and Czerwinski K. R. (1996) Complexation of metal ions with humic acid: Metal ion charge neutralization model. Radiochimica Acta 73, 5–10.

    CAS  Google Scholar 

  • Kim J. I., Buckau G., Baumgärtner F., Moon H., and Lux D. (1984) Colloid generation and the actinide migration in Gorleben groundwaters. Materials Research Society Symposium Proceedings 26, 31–40.

    Article  CAS  Google Scholar 

  • Kim J. I., Buckau G., Li G. H., Duschner H., and Psarros N. (1990) Characterization of humic and fulvic-acids from Gorleben groundwater. Fresenius Journal of Analytical Chemistry 338(3), 245–252.

    Article  CAS  Google Scholar 

  • Kim M. A., Panak P. J., Yun J. I., Kim J. I., Klenze R., and Kohler K. (2003) Interaction of actinides with aluminosilicate colloids in statu nascendi Part I: generation and characterization of actinide(III)-pseudocolloids. Colloids and Surfaces A: Physicochemical and Engineering Aspects 216(1–3), 97–108.

    Article  CAS  Google Scholar 

  • Kim M. A., Panak P. J., Yun J. I., Priemyshev A., and Kim J. I. (2005) Interaction of actinides(III) with aluminosilicate colloids in “statu nascendi” Part III. Colloid formation from monosilanol and polysilanol. Colloids and Surfaces A: Physicochemical and Engineering Aspects 254(1–3), 137–145.

    Article  CAS  Google Scholar 

  • Kim M. A., Panak P. J., Breban D. C., Priemyshev A., Yun J. I., Mansel A., and Kim J. I. (2007) Interaction of actinides(III) with aluminosilicate colloids. Part IV. Influence of humic acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects 296(1–3), 206–215.

    Article  CAS  Google Scholar 

  • Kimura T., Kato Y., Takeishi H., and Choppin G. R. (1998) Comparative study on the hydration states of Cm(III) and Eu(III) in solution and in cation exchange resin. Journal of Alloys and Compounds 271, 719–722.

    Article  Google Scholar 

  • King S. J., Warwick P., Hall A., Bryan N. D. (2001) The dissociation kinetics of dissolved metal-humic complexes. Phys. Chem. Chem. Phys., 3, 2080–2085.

    Article  CAS  Google Scholar 

  • Kosmulski M. (2009) pH-dependent surface charging and points of zero charge. IV. Update and new approach. Journal of Colloid and Interface Science 337(2), 439–448.

    Article  CAS  Google Scholar 

  • Kowal-Fouchard A., Drot R., Simoni E., and Ehrhardt J. J. (2004) Use of spectroscopic techniques for uranium (VI)/montmorillonite interaction modeling. Environmental Science & Technology 38(5), 1399–1407.

    Article  CAS  Google Scholar 

  • Kretzschmar R. and Schäfer T. (2005) Metal retention and transport on colloidal particles in the environment. Elements 1(4), 205–210.

    Article  CAS  Google Scholar 

  • Kunze P., Seher H., Hauser W., Panak P. J., Geckeis H., Fanghänel T., and Schäfer T. (2008) The influence of colloid formation in a granite groundwater bentonite pore water mixing zone on radionuclide speciation. Journal of Contaminant Hydrology 102, 263–272.

    Article  CAS  Google Scholar 

  • Kurosawa S. and Ueta S. (2001) Effect of colloids on radionuclide migration for performance assessment of HLW disposal in Japan. Pure and Applied Chemistry 73(12), 2027–2037.

    Article  CAS  Google Scholar 

  • Kurosawa S., Tanaka S., James S. C., and Yui M. (2006) The effect of montmorillonite partial density on the role of colloid filtration by a bentonite buffer. Journal of Nuclear Science and Technology 43(5), 605–609.

    Article  CAS  Google Scholar 

  • Lagaly G. and Ziesmer S. (2003) Colloid chemistry of clay minerals: the coagulation of montmorillonite dispersions. Advances in Colloid and Interface Science 100–102, 105–128.

    Article  CAS  Google Scholar 

  • Lead J. R., Wilkinson K. J., Balnois E., Cutak B. J., Larive C. K., Assemi S., and Beckett R. (2000) Diffusion coefficients and polydispersities of the Suwannee River fulvic acid: Comparison of fluorescence correlation spectroscopy, pulsed-field gradient nuclear magnetic resonance, and flow field-flow fractionation. Environmental Science & Technology 34(16), 3508–3513.

    Article  CAS  Google Scholar 

  • Leenheer J. A. and Croue J. P. (2003) Characterizing aquatic dissolved organic matter. Environmental Science & Technology 37(1), 18A–26A.

    Article  CAS  Google Scholar 

  • Leonard K. S., McCubbin D., and Lovett M. B. (1995) Physico-chemical characterisation of radionuclides discharged from a nuclear establishment. Science of the Total Environment 175(1), 9–24.

    Article  CAS  Google Scholar 

  • Liu J. and Neretnieks I. (2006) Physical and chemical stability of the bentonite buffer. Svensk Kärnbränslehantering AB.

    Google Scholar 

  • Liu D. J., Bruggeman C., and Maes N. (2008) The influence of natural organic matter on the speciation and solubility of Eu in Boom Clay porewater. Radiochimica Acta 96(9–11), 711–720.

    Article  CAS  Google Scholar 

  • Lührmann L., Noseck U., and Tix C. (1998) Model of contaminant transport in porous media in the presence of colloids applied to actinide migration in column experiments. Water Resources Research 34(3), 421–426.

    Article  Google Scholar 

  • Maes A., Geraedts K., Bruggeman C., Vancluysen J., Rossberg A., and Hennig C. (2004) Evidence for the interaction of technetium colloids with humic substances by X-ray absorption spectroscopy. Environmental Science & Technology 38(7), 2044–2051.

    Article  CAS  Google Scholar 

  • Maes N., Wang L., Hicks T., Bennett D., Warwick P., Hall T., Walker G., and Dierckx A. (2006) The role of natural organic matter in the migration behaviour of americium in the Boom Clay – Part I: Migration experiments. Physics and Chemistry of the Earth, Parts A/B/C 31(10–14), 541–547.

    Article  Google Scholar 

  • Malkovsky V. I., Dikov Y. P., Kalmykov S. N., and Buleev M. I. (2009) Structure of colloid particles in groundwaters on the territory of the Mayak production association and its impact on the colloid transport of radionuclides in subsoil environments. Geochemistry International 47(11), 1100–1106.

    Article  Google Scholar 

  • Marquardt C. M., Seibert A., Artinger R., Denecke M. A., Kuczewski B., Schild D., and Fanghänel T. (2004) The redox behaviour of plutonium in humic rich groundwater. Radiochimica Acta 92(9–11), 617–623.

    Article  CAS  Google Scholar 

  • Marty R. C., Bennett D., and Thullen P. (1997) Mechanism of plutonium transport in a shallow aquifer in Mortandad canyon, Los Alamos National Laboratory, New Mexico. Environmental Science & Technology 31(7), 2020–2027.

    Article  CAS  Google Scholar 

  • Matsunaga T., Nagao S., Ueno T., Takeda S., Amano H., and Tkachenko Y. (2004) Association of dissolved radionuclides released by the Chernobyl accident with colloidal materials in surface water. Applied Geochemistry 19(10), 1581–1599.

    Article  CAS  Google Scholar 

  • McCarthy J. F. and Zachara J. M. (1989) Subsurface transport of contaminants: Mobile colloids in the subsurface environment may alter the transport of contaminants. Environmental Science & Technology 23(5), 497–502.

    Google Scholar 

  • Missana T., Alonso U., Garcia-Gutierrez M., and Mingarro M. (2008) Role of bentonite colloids on europium and plutonium migration in a granite fracture. Applied Geochemistry 23(6), 1484–1497.

    Article  CAS  Google Scholar 

  • Monsallier J. M., Schüssler W., Buckau G., Rabung T., Kim J. I., Jones D., Keepax R., and Bryan N. (2003) Kinetic investigation of Eu(III)-humate interactions by ion exchange resins. Analytical Chemistry 75(13), 3168–3174.

    Article  CAS  Google Scholar 

  • Möri A., Alexander W. R., Geckeis H., Hauser W., Schäfer T., Eikenberg J., Fierz T., Degueldre C., and Missana T. (2003) The colloid and radionuclide retardation experiment at the Grimsel Test Site: influence of bentonite colloids on radionuclide migration in a fractured rock. Colloids and Surfaces A: Physicochemical and Engineering Aspects 217(1–3), 33–47.

    Article  CAS  Google Scholar 

  • Naber A., Plaschke M., Rothe J., Hofmann H., and Fanghänel T. (2006) Scanning transmission X-ray and laser scanning luminescence microscopy of the carboxyl group and Eu(III) distribution in humic acid aggregates. Journal of Electron Spectroscopy and Related Phenomena 153(3), 71–74.

    Article  CAS  Google Scholar 

  • Nagra. (2002) Stability and mobility of colloids in Opalinus Clay (ed. A. Voegelin and R. Kretzschmar), pp. 33. Nagra.

    Google Scholar 

  • Neck V., Altmaier M., Seibert A., Yun J. I., Marquardt C. M., and Fanghanel T. (2007a) Solubility and redox reactions of Pu(IV) hydrous oxide: Evidence for the formation of PuO2+x(s, hyd). Radiochimica Acta 95(4), 193–207.

    Article  CAS  Google Scholar 

  • Neck V., Altmaier M., Seibert A., Yun J. I., Marquardt C. M., and Fanghänel T. (2007b) Solubility and redox reactions of Pu(IV) hydrous oxide: Evidence for the formation of PuO2+x(s, hyd). Radiochimica Acta 95(4), 193–207.

    Article  CAS  Google Scholar 

  • Neretnieks I. (2006) Flow and transport through a damaged buffer - exploration of the impact of a cemented and an eroded buffer, pp. 43. SKB Technical Report 06-33, Svensk Kärnbränslehantering AG, Stockholm, Sweden.

    Google Scholar 

  • Neretnieks I. and Liu J. (2006) Physical and chemical stability of the bentonite buffer. SKB Technical Report 06-103, Svensk Kärnbränslehantering AG, Stockholm, Sweden.

    Google Scholar 

  • Nilsson A. C., Hedqvist I., and Degueldre C. (2008) Granitic groundwater colloids sampling and characterisation: The strategy for artefact elimination. Analytical and Bioanalytical Chemistry 391(4), 1327–1333.

    Article  CAS  Google Scholar 

  • Novikov A. P., Kalmykov S. N., Utsunomiya S., Ewing R. C., Horreard F., Merkulov A., Clark S. B., Tkachev V. V., and Myasoedov B. F. (2006) Colloid transport of plutonium in the far-field of the Mayak Production Association, Russia. Science 314(5799), 638–641.

    Article  CAS  Google Scholar 

  • Panak P., Klenze R., and Kim J. I. (1996) A study of ternary complexes of Cm(III) with humic acid and hydroxide or carbonate in neutral pH range by time-resolved laser fluorescence spectroscopy. Radiochimica Acta 74, 141–146.

    CAS  Google Scholar 

  • Panak P. J., Kim M. A., Yun J. I., and Kim J. I. (2003) Interaction of actinides with aluminosilicate colloids in statu nascendi. Part II: spectroscopic speciation of colloid-borne actinides(III). Colloids and Surfaces A: Physicochemical and Engineering Aspects 227(1–3), 93–103.

    Article  CAS  Google Scholar 

  • Panak P. J., Kim M. A., Klenze R., Kim J. I., and Fanghänel T. (2005) Complexation of Cm(III) with aqueous silicic acid. Radiochimica Acta 93(3), 133–139.

    Article  CAS  Google Scholar 

  • Penrose W. R., Polzer W. L., Essington E. H., Nelson D. M., and Orlandi K. A. (1990) Mobility of plutonium and americium through a shallow aquifer in a semiarid region. Environmental Science & Technology 24(2), 228–234.

    Article  CAS  Google Scholar 

  • Plaschke M., Rothe J., Schäfer T., Denecke M. A., Dardenne K., Pompe S., and Heise K. H. (2002) Combined AFM and STXM in situ study of the influence of Eu(III) on the agglomeration of humic acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects 197(1–3), 245–256.

    Article  CAS  Google Scholar 

  • Puls R. W. (1995) Use of low-flow or passive sampling techniques for sampling ground water. In Ground Water Sampling- A Workshop Summary. U.S.E.P.A. United States Environmental Protection Agency, report number: EPA/600/R-94/205.

    Google Scholar 

  • Puls R. W., Eychaner J. H., and Powell R. M. (1990) Colloidal-facilitated transport of inorganic contaminants in ground water: Part I. Sampling considerations. USEPA Environmental Research Brief EPA/600/M-90/023.

    Google Scholar 

  • Rabung T. and Geckeis H. (2010) Influence of pH and metal ion loading on the Cm(III) humate complexation: A time resolved laser fluorescence spectroscopy study. Radiochimica Acta 97, 265–271.

    Article  CAS  Google Scholar 

  • Rabung T., Pierret M. C., Bauer A., Geckeis H., Bradbury M. H., and Baeyens B. (2005) Sorption of Eu(III)/Cm(III) on Ca-montmorillonite and Na-illite. Part 1: Batch sorption and time-resolved laser fluorescence spectroscopy experiments. Geochimica Et Cosmochimica Acta 69(23), 5393–5402.

    Article  CAS  Google Scholar 

  • Rajagopalan R. and Tien C. (1976) Trajectory analysis of deep-bed filtration with the sphere-in-cell porous media model. AIChE Journal 22, 523–533.

    Article  CAS  Google Scholar 

  • Roberts K. A., Santschi P. H., Leppard G. G., and West M. M. (2004) Characterization of organic-rich colloids from surface and ground waters at the actinide-contaminated Rocky Flats Environmental Technology Site (RFETS), Colorado, USA. Colloids and Surfaces A: Physicochemical and Engineering Aspects 244(1–3), 105–111.

    Article  CAS  Google Scholar 

  • Robinson B. A., Li C. H., and Ho C. K. (2003) Performance assessment model development and analysis of radionuclide transport in the unsaturated zone, Yucca Mountain, Nevada. Journal of Contaminant Hydrology 62–63, 249–268.

    Article  CAS  Google Scholar 

  • Ryan J. N. and Elimelech M. (1996) Colloid mobilization and transport in groundwater. Colloids and Surfaces A 107, 1–56.

    Article  CAS  Google Scholar 

  • Ryan J. N. and Gschwend P. M. (1990) Colloid mobilization in two Atlantic Coastal Plain aquifers: Field studies. Water Resources Research 26(2), 307–322.

    Article  CAS  Google Scholar 

  • Ryan J. N. and Gschwend P. M. (1994) Effect of solution chemistry on clay colloid release from an iron oxide-coated aquifer sand. Environmental Science & Technology 28(9), 1717–1726.

    Article  CAS  Google Scholar 

  • Salbu B., Bjornstad H. E., Svaren I., Prosser S. L., Bulman R. A., Harvey B. R., and Lovett M. B. (1993) Size distribution of radionuclides in nuclear-fuel reprocessing liquids after mixing with seawater. Science of the Total Environment 130, 51–63.

    Article  Google Scholar 

  • Schäfer T., Artinger R., Dardenne K., Bauer A., Schuessler W., and Kim J. I. (2003) Colloid-borne Americium migration in Gorleben groundwater: Significance of iron secondary phase transformation. Environmental Science & Technology 37(8), 1528–1534.

    Article  CAS  Google Scholar 

  • Schäfer T., Geckeis H., Bouby M., and Fanghänel T. (2004) U, Th, Eu and colloid mobility in a granite fracture under near-natural flow conditions. Radiochimica Acta 92, 731–737.

    Article  Google Scholar 

  • Schäfer T., Buckau G., Artinger R., Kim J. I., Geyer S., Wolf M., Bleam W. F., Wirick S., and Jacobsen C. (2005) Origin and mobility of fulvic acids in the Gorleben aquifer system: implications from isotopic data and carbon/sulfur XANES. Organic Geochemistry 36(4), 567–582.

    Article  CAS  Google Scholar 

  • Schäfer T., Chanudet V., Claret F., and Filella M. (2007) Spectromicroscopy mapping of colloidal/particulate organic matter in Lake Brienz, Switzerland. Environmental Science & Technology 41(22), 7864–7869.

    Article  CAS  Google Scholar 

  • Schäfer T., Seher H., Hauser W., Walther C., Degueldre C., Yamada M., Suzuki M., Missana T., Alonso U., Trick T., and Blechschmidt I. (2009) The Colloid Formation and Migration (CFM) project at the Grimsel Test Site (Switzerland): Results from the homologue tests. Geochimica Et Cosmochimica Acta 73(13), A1168.

    Google Scholar 

  • Schäfer T., Huber F., Seher H., Missana T., Alonso U., Kumke M. U., Eidner S., Claret F., Enzmann F. (2011) Nanoparticles and their influence on radionuclide mobility in deep geological formations. Appl. Geochem., accepted.

    Google Scholar 

  • Schlegel M. L. and Descostes M. (2009) Uranium uptake by hectorite and montmorillonite: A solution chemistry and polarized EXAFS study. Environmental Science & Technology 43(22), 8593–8598.

    Article  CAS  Google Scholar 

  • Schmidt M., Stumpf T., Walther C., Geckeis H., and Fanghänel T. (2009) Incorporation versus adsorption: Substitution of Ca2+ by Eu3+ and Cm3+ in aragonite and gypsum. Dalton Transactions (33), 6645–6650.

    Google Scholar 

  • Schuessler W., Artinger R., Kienzler B., and Kim J. I. (2000) Conceptual modeling of the humic colloid-borne Americium(III) migration by a kinetic approach. Environmental Science & Technology 34, 2608–2611.

    Article  CAS  Google Scholar 

  • Schuessler W., Artinger R., Kim J. I., Bryan N. D., and Griffin D. (2001) Numerical modeling of humic colloid borne Americium(III) migration in column experiments using the transport/speciation code K1D and the KICAM model. Journal of Contaminant Hydrology 47(2–4), 311–322.

    Article  Google Scholar 

  • Seher H., Albarran N., Hauser W., Götz R., Missana T., Geckeis H., Fanghänel T., and Schäfer T. (2009) Colloid generation by erosion of compacted bentonite under different geochemical conditions. 4th Annual Workshop Proceeding of integrated project “Fundamental processes of Radionuclide Migration” – 6th EC FP IP FUNMIG, FZKA report 7461, 143–150.

    Google Scholar 

  • Seher H., Hauser W., Geckeis H., Fanghänel T., and Schäfer T. (2010) Bentonite nanoparticle stability and effect of fulvic acids: experiments and modelling. Colloids and Surfaces A.

    Google Scholar 

  • Seher H. (2010) Der Einfluss von Kolloiden auf die Migration von Radionukliden (The influence of colloids on radionuclide migration), Thesis, University of Heidelberg, 2011.

    Google Scholar 

  • Severino G., Cvetkovic V., and Coppola A. (2007) Spatial moments for colloid-enhanced radionuclide transport in heterogeneous aquifers. Advances in Water Resources 30(1), 101–112.

    Article  Google Scholar 

  • Sholkovitz E. R. (1976) Flocculation of dissolved organic and inorganic matter during mixing of river water and seawater. Geochimica Et Cosmochimica Acta 40(7), 831–845.

    Article  CAS  Google Scholar 

  • Simoni E. (2002) Radionuclides retention: from macroscopic to microscopic. Comptes Rendus Physique 3(7–8), 987–997.

    Article  CAS  Google Scholar 

  • SKB (2005) The colloid investigations conducted at the Äspö Hard Rock Laboratory during 2000–2004, Technical report TR-05-20 (ed. M. Laaksoharju and S. Wold), pp. 620. Svensk Kärnbränslehantering AB.

    Google Scholar 

  • SKB (2006a) Buffer and backfill process report for the safety assessment SR-Can, pp. 620. Svensk Kärnbränslehantering AB.

    Google Scholar 

  • SKB (2006b) Long-term safety for KBS-3 repositories at Forsmark and Laxemar – a first evaluation; Main report of the SR-Can project. SKB Technical report TR-06-09, pp. 620. Svensk Kärnbränslehantering AB.

    Google Scholar 

  • Soderholm L., Almond P. M., Skanthakumar S., Wilson R. E., and Burns P. C. (2008) The structure of the plutonium oxide nanocluster [Pu38O56Cl54(H2O)(8)](14-). Angewandte Chemie-International Edition 47(2), 298–302.

    Article  CAS  Google Scholar 

  • Song L., Johnson P. R., and Elimelech M. (1994) Kinetics of colloid deposition onto heterogeneously charged surfaces in porous media. Environmental Science & Technology 28, 1164–1171.

    Article  CAS  Google Scholar 

  • Stumpf T. and Fanghänel T. (2002) A time-resolved laser fluorescence spectroscopy (TRLFS) study of the interaction of trivalent actinides (Cm(III)) with calcite. Journal of Colloid and Interface Science 249(1), 119–122.

    Article  CAS  Google Scholar 

  • Stumpf T., Bauer A., Coppin F., and Il Kim J. (2001) Time-resolved laser fluorescence spectroscopy study of the sorption of Cm(III) onto smectite and kaolinite. Environmental Science & Technology 35(18), 3691–3694.

    Article  CAS  Google Scholar 

  • Stumpf Th., Bauer A., Coppin F., Fanghänel Th., Kim J. I. (2002) Inner-sphere, outer-sphere and ternary surface complexes: A TRLFS study of the sorption process of Eu(III) onto smectite and Kaolinite. Radiochim. Acta, 90, 345–349.

    Article  CAS  Google Scholar 

  • Stumpf T., Hennig C., Bauer A., Denecke M. A., and Fanghänel T. (2004) An EXAFS and TRLFS study of the sorption of trivalent actinides onto smectite and kaolinite. Radiochimica Acta 92(3), 133–138.

    Article  CAS  Google Scholar 

  • Stumpf T., Fernandes M. M., Walther C., Dardenne K., and Fanghänel T. (2006) Structural characterization of Am incorporated into calcite: A TRLFS and EXAFS study. Journal of Colloid and Interface Science 302(1), 240–245.

    Article  CAS  Google Scholar 

  • Suteerapataranon S., Bouby M., Geckeis H., Fanghänel T., and Grudpan K. (2006) Interaction of trace elements in acid mine drainage solution with humic acid. Water Research 40(10), 2044–2054.

    Article  CAS  Google Scholar 

  • Sylwester E. R., Hudson E. A., and Allen P. G. (2000) The structure of uranium(VI) sorption complexes on silica, alumina and montmorillonite. Geochimica et Cosmochimica Acta 64(14), 2431–2438.

    Article  CAS  Google Scholar 

  • Tipping E. (1998) Humic ion-binding model VI: An improved description of the interactions of protons and metal ions with humic substances. Aquatic Geochemistry 4(1), 3–48.

    Article  CAS  Google Scholar 

  • Tombácz E. and Szekeres M. (2004) Colloidal behavior of aqueous montmorillonite suspensions: the specific role of pH in the presence of indifferent electrolytes. Applied Clay Science 27, 75–94.

    Article  CAS  Google Scholar 

  • Tufenkji N. and Elimelech M. (2005) Breakdown of colloid filtration theory: Role of the secondary energy minimum and surface charge heterogeneities. Langmuir 21(3), 841–852.

    Article  CAS  Google Scholar 

  • Tullborg E. L. and Gustafsson E. (1999) C-14 in bicarbonate and dissolved organics – A useful tracer? Applied Geochemistry 14(7), 927–938.

    Article  CAS  Google Scholar 

  • Utsunomiya S., Kersting A. B., and Ewing R. C. (2009) Groundwater nanoparticles in the far-field at the Nevada Test Site: Mechanism for radionuclide transport. Environmental Science & Technology 43(5), 1293–1298.

    Article  CAS  Google Scholar 

  • Van De Weerd H. (1997) Assessment of the effect of kinetics on colloid facilitated radionuclide transport in porous media. Journal of contaminant Hydrology 26, 245–256.

    Article  Google Scholar 

  • Vilks P. and Bachinski D. B. (1996) Colloid and suspended particle migration experiments in a granite fracture. Journal of Contaminant Hydrology 21(1–4), 269–279.

    Article  CAS  Google Scholar 

  • Vilks P. and Baik M. H. (2001) Laboratory migration experiments with radionuclides and natural colloids in a granite fracture. Journal of Contaminant Hydrology 47(2–4), 197–210.

    Article  CAS  Google Scholar 

  • Walther C., Buchner S., Filella M., and Chanudet V. (2006) Probing particle size distributions in natural surface waters from 15 nm to 2 μm by a combination of LIBD and single-particle counting. Journal of Colloid and Interface Science 301(2), 532–537.

    Article  CAS  Google Scholar 

  • Wang X. K., Rabung T., Geckeis H., Panak P. J., Klenze R., and Fanghänel T. (2004) Effect of humic acid on the sorption of Cm(III) onto gamma-Al2O3 studied by the time-resolved laser fluorescence spectroscopy. Radiochimica Acta 92(9–11), 691–695.

    Article  CAS  Google Scholar 

  • Weng L. P., Van Riemsdijk W. H., and Hiemstra T. (2007) Adsorption of humic acids onto goethite: Effects of molar mass, pH and ionic strength. Journal of Colloid and Interface Science 314(1), 107–118.

    Article  CAS  Google Scholar 

  • Wilkinson K. J. and Lead J. R. (2006) Environmental Colloids and Particles Behaviour, Separation and Characterisation. In IUPAC Series on Analytical and Physical Chemistry of Environmental Systems, Vol. 10, pp. 702. John Wiley & Sons.

    Google Scholar 

  • Wimmer H., Kim J. I., and Klenze R. (1992) A direct speciation of Cm(III) in natural aquatic systems by time-resolved laser-induced fluorescence spectroscopy (Trlfs). Radiochimica Acta 58–59, 165–171.

    Google Scholar 

  • Wold S. and Eriksen T. E. (2003) Diffusion of lignosulfonate colloids in compacted bentonite. Applied Clay Science 23(1–4), 43–50.

    Article  CAS  Google Scholar 

  • Wold S. and Eriksen T. (2007) Diffusion of humic colloids in compacted bentonite. Physics and Chemistry of the Earth 32(1–7), 477–484.

    Google Scholar 

  • Zachara J. M., Serne J., Freshley M., Mann F., Anderson F., Wood M., Jones T., and Myers D. (2007) Geochemical processes controlling migration of tank wastes in Hanford’s vadose zone. Vadose Zone Journal 6(4), 985–1003.

    Article  CAS  Google Scholar 

  • Zeh P., Kim J. I., Marquardt C., and Artinger R. (1999) Reduction of Np(V) in groundwater rich in humic substances. Radiochimica Acta 87, 23–28.

    CAS  Google Scholar 

  • Zhuang J., McCarthy J. F., Tyner J. S., Perfect E., and Flury M. (2007) In situ colloid mobilization in hanford sediments under unsaturated transient flow conditions: Effect of irrigation pattern. Environmental Science & Technology 41(9), 3199–3204.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Part of the studies described here were funded by the Federal Ministry of Economics and Technology (BMWi) under the joint KIT-INE, GRS research project “KOLLORADO & KOLLORADO 2” and the SKB/KTH “Colloid project”. We also want to thank all organizations contributing to the funding of the Colloid Formation and Migration (CFM) project, namely: ANDRA (France), BMWi (Germany), JAEA (Japan), CRIEPI (Japan), AIST (Japan), NAGRA (Switzerland), POSIVA (Finland) and SKB (Sweden).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst Geckeis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Geckeis, H., Rabung, T., Schäfer, T. (2011). Actinide-Nanoparticle Interaction: Generation, Stability and Mobility. In: Kalmykov, S., Denecke, M. (eds) Actinide Nanoparticle Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11432-8_1

Download citation

Publish with us

Policies and ethics