Skip to main content

Exact and Parameterized Algorithms for Max Internal Spanning Tree

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5911))

Included in the following conference series:

Abstract

We consider the \(\mathcal{NP}\)-hard problem of finding a spanning tree with a maximum number of internal vertices. This problem is a generalization of the famous Hamiltonian Path problem. Our dynamic-programming algorithms for general and degree-bounded graphs have running times of the form O *(c n) (c ≤ 3). The main result, however, is a branching algorithm for graphs with maximum degree three. It only needs polynomial space and has a running time of O(1.8669n) when analyzed with respect to the number of vertices. We also show that its running time is 2.1364k n O(1) when the goal is to find a spanning tree with at least k internal vertices. Both running time bounds are obtained via a Measure & Conquer analysis, the latter one being a novel use of this kind of analysis for parameterized algorithms.

This work was partially Supported by a PPP grant between DAAD (Germany) and NFR (Norway).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellman, R.: Dynamic programming treatment of the Travelling Salesman Problem. J. Assoc. Comput. Mach. 9, 61–63 (1962)

    MATH  MathSciNet  Google Scholar 

  2. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: The travelling salesman problem in bounded degree graphs. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 198–209. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Cohen, N., Fomin, F.V., Gutin, G., Kim, E.J., Saurabh, S., Yeo, A.: Algorithm for finding k-Vertex Out-trees and its application to k-Internal Out-branching problem. In: COCOON 2009. Springer, Heidelberg (2008) (to appear)

    Google Scholar 

  4. Eppstein, D.: The Traveling Salesman problem for cubic graphs. J. Graph Algorithms Appl. 11(1), 61–81 (2007)

    MATH  MathSciNet  Google Scholar 

  5. Fomin, F.V., Gaspers, S., Saurabh, S., Thomassé, S.: A linear vertex kernel for Maximum Internal Spanning Tree. ArXiv Report CoRR abs/0907.3473 (2009)

    Google Scholar 

  6. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. J. Soc. Indust. Appl. Math. 10, 196–210 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  7. Iwama, K., Nakashima, T.: An improved exact algorithm for cubic graph TSP. In: Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp. 108–117. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Karp, R.M.: Dynamic programming meets the principle of inclusion-exclusion. Inf. Process. Lett. 1(2), 49–51 (1982)

    MATH  MathSciNet  Google Scholar 

  9. Kohn, S., Gottlieb, A., Kohn, M.: A generating function approach to the Traveling Salesman Problem. In: Proceedings of the 1977 ACM Annual Conference (ACM 1977), pp. 294–300. Association for Computing Machinery (1977)

    Google Scholar 

  10. Nederlof, J.: Fast polynomial-space algorithms using Möbius inversion: Improving on Steiner Tree and related problems. In: Albers, S., et al. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 713–725. Springer, Heidelberg (2009)

    Google Scholar 

  11. Prieto, E., Sloper, C.: Either/or: Using vertex cover structure in designing FPT-algorithms—the case of k-internal spanning tree. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 474–483. Springer, Heidelberg (2003)

    Google Scholar 

  12. Prieto, E., Sloper, C.: Reducing to independent set structure – the case of k-internal spanning tree. Nord. J. Comput. 12(3), 308–318 (2005)

    MATH  MathSciNet  Google Scholar 

  13. Salamon, G., Wiener, G.: On finding spanning trees with few leaves. Inf. Process. Lett. 105(5), 164–169 (2008)

    Article  MathSciNet  Google Scholar 

  14. Salamon, G.: Approximation algorithms for the maximum internal spanning tree problem. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 90–102. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Wahlström, M.: Algorithms, Measures and Upper Bounds for Satisfiability and Related Problems. PhD thesis, Linköpings universitet, Sweden (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fernau, H., Gaspers, S., Raible, D. (2010). Exact and Parameterized Algorithms for Max Internal Spanning Tree . In: Paul, C., Habib, M. (eds) Graph-Theoretic Concepts in Computer Science. WG 2009. Lecture Notes in Computer Science, vol 5911. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11409-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11409-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11408-3

  • Online ISBN: 978-3-642-11409-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics