Skip to main content

An Even Simpler Linear-Time Algorithm for Verifying Minimum Spanning Trees

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5911))

Included in the following conference series:

Abstract

A new linear-time algorithm is presented for the tree-path-maxima problem of, given a tree T with real edge weights and a list of pairs of distinct nodes in T, computing for each pair (u,v) on the list a maximum-weight edge on the path in T between u and v. Linear-time algorithms for the tree-path-maxima problem were known previously, but the new algorithm may be considered significantly simpler than the earlier solutions. A linear-time algorithm for the tree-path-maxima problem implies a linear-time algorithm for the MST-verification problem of determining whether a given spanning tree of a given undirected graph G with real edge weights is a minimum-weight spanning tree of G.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahuja, R.K., Magnanti, T.L., Orlin, J.R.: Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, Upper Saddle River (1993)

    Google Scholar 

  2. Borůvka, O.: O jistém problému minimálním. Práce Mor. Přírodověd. Spol. v Brně 3, 37–58 (1926)

    Google Scholar 

  3. Buchsbaum, A.L., Georgiadis, L., Kaplan, H., Rogers, A., Tarjan, R.E., Westbrook, J.R.: Linear-time algorithms for dominators and other path-evaluation problems. SIAM J. Comput. 38, 1533–1573 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chazelle, B.: Computing on a free tree via complexity-preserving mappings. Algorithmica 2, 337–361 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chazelle, B.: A minimum spanning tree algorithm with inverse-Ackermann type complexity. J. Assoc. Comput. Mach. 47, 1028–1047 (2000)

    MATH  MathSciNet  Google Scholar 

  6. Chazelle, B., Rosenberg, B.: The complexity of computing partial sums off-line. Internat. J. Comput. Geometry Appl. 1, 33–45 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chiang, Y., Goodrich, M.T., Grove, E.F., Tamassia, R., Vengroff, D.E., Vitter, J.S.: External-memory graph algorithms. In: Proc. 6th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 139–149 (1995)

    Google Scholar 

  8. Dixon, B., Rauch, M., Tarjan, R.E.: Verification and sensitivity analysis of minimum spanning trees in linear time. SIAM J. Comput. 21, 1184–1192 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fredman, M.L., Willard, D.E.: Trans-dichotomous algorithms for minimum spanning trees and shortest paths. J. Comput. System Sci. 48, 533–551 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Graham, R.L., Hell, P.: On the history of the minimum spanning tree problem. Annals Hist. Comput. 7, 43–57 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  11. Karger, D.R., Klein, P.N., Tarjan, R.E.: A randomized linear-time algorithm to find minimum spanning trees. J. Assoc. Comput. Mach. 42, 321–328 (1995)

    MATH  MathSciNet  Google Scholar 

  12. Katriel, I., Sanders, P., Träff, J.L.: A practical minimum spanning tree algorithm using the cycle property. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 679–690. Springer, Heidelberg (2003)

    Google Scholar 

  13. King, V.: A simpler minimum spanning tree verification algorithm. Algorithmica 18, 263–270 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Komlós, J.: Linear verification for spanning trees. Combinatorica 5, 57–65 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  15. Mareš, M.: The saga of minimum spanning trees. Comput. Sci. Rev. 2, 165–221 (2008)

    Article  Google Scholar 

  16. Pettie, S.: An inverse-Ackermann type lower bound for online minimum spanning tree verification. Combinatorica 26, 207–230 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Pettie, S., Ramachandran, V.: An optimal minimum spanning tree algorithm. J. Assoc. Comput. Mach. 49, 16–34 (2002)

    MathSciNet  Google Scholar 

  18. Pettie, S., Ramachandran, V.: Randomized minimum spanning tree algorithms using exponentially fewer random bits. ACM Trans. Algorithms 4(1), 5:1–5:27 (2008)

    Article  MathSciNet  Google Scholar 

  19. Tarjan, R.E.: Applications of path compression on balanced trees. J. Assoc. Comput. Mach. 26, 690–715 (1979)

    MATH  MathSciNet  Google Scholar 

  20. Yao, A.C.: Space-time tradeoff for answering range queries. In: Proc. 14th Annual ACM Symposium on Theory of Computing (STOC), pp. 128–136 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hagerup, T. (2010). An Even Simpler Linear-Time Algorithm for Verifying Minimum Spanning Trees. In: Paul, C., Habib, M. (eds) Graph-Theoretic Concepts in Computer Science. WG 2009. Lecture Notes in Computer Science, vol 5911. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11409-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11409-0_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11408-3

  • Online ISBN: 978-3-642-11409-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics