Teaching Public-Key Cryptography in School

  • Lucia Keller
  • Dennis Komm
  • Giovanni Serafini
  • Andreas Sprock
  • Björn Steffen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5941)


These days, public-key cryptography is indispensable to ensure both confidentiality and authenticity in numerous applications which comprise securely communicating via mobile phone or email or digitally signing documents.

For all public-key systems, such as RSA, mathematically challenging and technically involved methods are employed which are often above the level of secondary school students as they employ deep results from algebra. Following an approach suggested in 2003 by Tim Bell et al. in Computers and Education, volume 40, number 3, we deal with the question of how to teach young students the main concepts, issues, and solutions of public-key systems without being forced to also teach rather complicated theorems of number theory beforehand.


Secret Information Teaching Goal Encrypt Message Phone Book Symmetric Cryptography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bauer, F.L.: Decrypted Secrets: Methods and Maxims of Cryptology, 4th edn. Springer, Secaucus (2006)Google Scholar
  2. 2.
    Bell, T., Fellows, M., Witten, I.H.: Computer Science Unplugged - Off-line activities and games for all ages (1999), (last accessed: October 22, 2009)
  3. 3.
    Bell, T., Thimbleby, H., Fellows, M., Witten, I., Koblitz, N., Powell, M.: Explaining cryptographic systems. Computers & Education 40(3), 199–215 (2003)CrossRefGoogle Scholar
  4. 4.
    Bundesrat and EDK. Verordnung des Bundesrates/Reglement der EDK über die Anerkennung von gymnasialen Maturitätsausweisen (MAR) (1995), (last accessed: October 22, 2009)
  5. 5.
    Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. In: Proc. of the Nineteenth Annual ACM Symposium on Theory of Computing (STOC 1987), pp. 1–6. ACM, New York (1987)CrossRefGoogle Scholar
  6. 6.
    Cull, P.: Perfect codes on graphs. In: Proc. of the 1997 International Symposium on Information Theory, p. 452 (1997)Google Scholar
  7. 7.
    Delfs, H., Knebl, H.: Introduction to Cryptography: Principles and Applications. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  8. 8.
    Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on Information Theory IT-22(6), 644–654 (1976)Google Scholar
  9. 9.
    Elmiger, D.: Die zweisprachige Maturität in der Schweiz (2008), (last accessed: October 22, 2009)
  10. 10.
    Freiermuth, K., Hromkovič, J., Keller, L., Steffen, B.: Kryptologie, Lehrbuch Informatik. Vieweg+Teubner (to appear, 2009)Google Scholar
  11. 11.
    Hromkovič, J.: Algorithmic Adventures. Springer, Berlin (2009)zbMATHCrossRefGoogle Scholar
  12. 12.
    Nishida, T., Idosaka, Y., Hofuku, Y., Kanemune, S., Kuno, Y.: New methodology of information education with “computer science unplugged”. In: Mittermeir, R.T., Sysło, M.M. (eds.) ISSEP 2008. LNCS, vol. 5090, pp. 241–252. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Salomaa, A.: Public-Key Cryptography. Springer, Berlin (1996)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Lucia Keller
    • 1
  • Dennis Komm
    • 1
  • Giovanni Serafini
    • 1
  • Andreas Sprock
    • 1
  • Björn Steffen
    • 1
  1. 1.Department of Computer ScienceETH ZurichSwitzerland

Personalised recommendations