Skip to main content

Spatial Clustering of Multivariate Data Using Weighted MAX-SAT

  • Conference paper
  • First Online:
New Perspectives in Statistical Modeling and Data Analysis

Abstract

Incorporating geographical constraints is one of the main challenges of spatial clustering. In this paper we propose a new algorithm for clustering of spatial data using a conjugate Bayesian model and weighted MAX-SAT solvers. The fast and flexible Bayesian model is used to score promising partitions of the data. However, the partition space is huge and it cannot be fully searched, so here we propose an algorithm that naturally incorporates the geographical constraints to guide the search over the space of partitions. We illustrate our proposed method on a simulated dataset of social indexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Crowley, E. M. (1997). Product partition models for normal means. Journal of the American Statistical Association, 92(437), 192–198.

    Article  MATH  Google Scholar 

  • Cussens, J. (2008). Bayesian network learning by compiling to weighted MAX-SAT. In Proceedings of the 24th conference on Uncertainty in Artificial Intelligence (UAI 2008).

    Google Scholar 

  • Fraley, C., & Raftery, A. E. (1998). How many clusters? Which clustering method? Answers via model-based cluster analysis. The Computer Journal, 41, 578–588.

    Article  MATH  Google Scholar 

  • Gordon, A. D. (1996). A survey of constrained classification. Computational Statistics & Data Analysis, 21(1), 17–29.

    Article  MATH  MathSciNet  Google Scholar 

  • Heard, N. A., Holmes, C. C., & Stephens, D. A. (2006). A quantitative study of gene regulation involved in the immune response of anopheline mosquitoes: An application of Bayesian hierarchical clustering of curves. Journal of the American Statistical Association, 101(473), 18–29.

    Article  MATH  MathSciNet  Google Scholar 

  • Johnston, R. J. (1976). Classification in Geography: CLADAG 6. Geo Abstracts.

    Google Scholar 

  • Legendre, P. (1987). Constrained clustering. In P. Legendre & L. Legendre (Eds.), Developments in numerical ecology (pp. 289–307). Springer-Verlag.

    Google Scholar 

  • Liverani, S., Anderson, P. E., Edwards, K. D., Millar, A. J., & Smith, J. Q. (2009). Efficient utility-based clustering over high dimensional partition spaces. Journal of Bayesian Analysis, 4(3), 539–572.

    MathSciNet  Google Scholar 

  • Liverani, S., Cussens, J., & Smith, J. Q. (2009). Searching a multivariate partition space using weighted MAX-SAT. In Proceedings of 6th International Meeting of Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB2009).

    Google Scholar 

  • Ray, S., & Mallick, B. (2006). Functional clustering by Bayesian wavelet methods. Journal of the Royal Statistical Society: Series B, 68(2), 305–332.

    Article  MATH  MathSciNet  Google Scholar 

  • Smith, J. Q., Anderson, P. E., & Liverani, S. (2008). Separation measures and the geometry of bayes factor selection for classification. Journal of the Royal Statistical Society: Series B, 70(5), 957–980.

    Article  MathSciNet  Google Scholar 

  • Tompkins, D. A. D., & Hoos, H. H. (2005). UBCSAT: An implementation and experimentation environment for SLS algorithms for SAT and MAX-SAT. In H. H. Hoos & D. G. Mitchell (Eds.), Theory and applications of satisfiability testing: Revised selected papers of the seventh international conference (SAT 2004, Vancouver, BC, Canada, May 10–13, 2004) (pp. 306–320), Volume 3542 of Lecture Notes in Computer Science. Berlin, Germany: Springer Verlag.

    Google Scholar 

  • Zhou, C., Wakefield, J. C., & Breeden, L. L. (2006). Bayesian analysis of cell-cycle gene expression data. In K. A. Do, P. Müller, & M. Vannucci (Eds.), Bayesian inference for gene expression and proteomics (pp. 177–200). Cambridge University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Liverani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liverani, S., Petrucci, A. (2011). Spatial Clustering of Multivariate Data Using Weighted MAX-SAT. In: Ingrassia, S., Rocci, R., Vichi, M. (eds) New Perspectives in Statistical Modeling and Data Analysis. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11363-5_27

Download citation

Publish with us

Policies and ethics