Skip to main content

The Solar Wind and Its Interaction with the Interstellar Medium

  • Conference paper
  • First Online:
Heliophysical Processes

Part of the book series: Astrophysics and Space Science Proceedings ((ASSSP))

Abstract

The solar wind is a magnetized plasma of ions and electrons which flows outward from the Sun. This chapter begins with a brief history of the discovery of the solar wind. Solar wind properties at 1 AU are discussed as well as how these properties change over a solar cycle. The solar wind evolves as it moves outward through the solar system and interacts with the interstellar neutrals which slow and heat the wind. The solar wind runs into a variety of obstacles as it moves outward, the non-conducting Moon and asteroids, comets and unmagnetized planets where the atmosphere forms a conducting barrier, and magnetized planets with large magnetospheres. Finally the solar wind reaches the interstellar medium, going through the termination shock and then diverting down the tail of the heliosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aellig, M.R., Lazarus, A.J., Steinberg, J.T.: The solar wind helium abundance: variation with wind speed and the solar cycle. Geophys. Res. Lett. 28, 2767–2770 (2001)

    Article  ADS  Google Scholar 

  • Biermann, L.: Kometenschweife und sol are Korpuskularstrahlung. Z. Astrophys. 29, 274–286 (1951)

    ADS  Google Scholar 

  • Burlaga, L.F.: Interplanetary Magnetohydrodynamics. Oxford University Press, New York (1995)

    Google Scholar 

  • Burlaga, L.F., Ness, N.F., Acuna, M.H., Lepping, R.P., Connerney, J.E.P., Stone, E.C., McDonald, F.B.: Crossing the termination shock into the heliosheath. Magn. Fields Sci. 309, 2027–2029 (2005)

    Google Scholar 

  • Burlaga, L.F., Ness, N.F., Acuna, M.H., Lepping, R.P., Connerney, J.E.P., Richardson J.D.: Observations of magnetic fields at the termination shock by Voyager 2. Nature. 454, 75–77 (2008)

    Article  ADS  Google Scholar 

  • Carrington, R.C.: Description of a singular appearance seen in the Sun on September 1, 1859. Mon. Not. R. Astron. Soc. 20, 13–15 (1860)

    ADS  Google Scholar 

  • Chapman, S., Ferraro, V.C.A.: A new theory of magnetic storms. Nature. 126, 129–130 (1930)

    Article  ADS  Google Scholar 

  • Cranfill, C.W.: Flow problems in astrophysical systems. Thesis (Ph.D.), Department of Physics, University of California, San Diego, California (1971)

    Google Scholar 

  • Decker, R.B., Krimigis, S.M., Roelof, E.C., Hill, M.E., Armstrong, T.P., Gloeckler, G., Hamilton, D.C., Lanzerotti, L.J.: Voyager 1 in the foreshock, termination shock, and heliosheath. Science. 309, 2020–2024 (2005). doi: 10.1126/science.1117569

    Article  ADS  Google Scholar 

  • Decker, R.B., Krimigis, S.M., Roelof, E.C., Hill, M.E.: Low-energy ions near the termination shock. In: Physics of the inner heliosheath: voyager observations, theory, and future prospects, AIP conference proceedings 258, 73–78 (2006)

    ADS  Google Scholar 

  • Decker, R.B., et al.: Shock that terminates the solar wind is mediated by non-thermal ions. Nature. 454, 67–70 (2008)

    Article  ADS  Google Scholar 

  • Feldman, W.C., Asbridge, J.R., Bame, S.J., Gosling, J.T.: Long-term variations of selected solar wind properties: IMP 6, 7, and 8 results. J. Geophys. Res. 83, 2177 (1978)

    Article  ADS  Google Scholar 

  • Gazis, P.R.: Limits on deceleration and asymmetry of solar wind speed. Geophys. Res. Lett. 22, 2441 (1995)

    Article  ADS  Google Scholar 

  • Gloeckler, G., Fisk, L.A., Lanzerotti, L.J.: Acceleration of solar wind and pickup ions by shocks. In: Solar wind 11/SOHO 16 programme and abstract book (pdf file), European Space Agency, the Netherlands, 52 (2005)

    Google Scholar 

  • Gringauz, K.I.: Some results of experiments in interplanetary space by means of charged particle traps on Soviet space probes. Space Res. 2, 539–553 (1961)

    Google Scholar 

  • Hoffmeister, C.: Physikalisch Untersuchungen auf Kometen. I. Die Beziehungen des primaren Schweifstrahl zum Radiusvektor. Z. Astrophys. 22, 265–285 (1943)

    Google Scholar 

  • Howe, R., et al.: Dynamic variations at the base of the solar convection zone. Science. 287 2456–2460 (2000)

    Article  ADS  Google Scholar 

  • Isenberg, P.A., Smith, C.W., Matthaeus, W.H., Richardson, J.D.: Turbulent heating of the distant solar wind by interstellar pickup protons with a variable solar wind speed. In: Fleck B., Zurbuchen, T.H. (eds.) Proceedings of solar wind 11: connecting Sun and Heliosphere, ESA SP-592, pp. 347–350. European Space Agency, The Netherlands (2005)

    Google Scholar 

  • Jokipii, J.R., Giacalone, J., Kota, J.: Transverse streaming anisotropies of charged particles accelerated at the solar wind termination shock. Astrophys. J. 611, L141–L144 (2004)

    Article  ADS  Google Scholar 

  • Karmesin, S.R., Liewer, P.C., Brackbill, J.U.: Motion of the termination shock in response to an 11 year variation in the solar wind. Geophys. Res. Lett. 22, 1153–1156 (1995)

    Article  ADS  Google Scholar 

  • Lazarus, A.J. McNutt, R.L. Jr.: Plasma observations in the distant heliosphere: a view from Voyager. In: Grzedzielski, S., Page, D.E. (eds.) Physics of the outer heliosphere, pp. 229–234. Pergamon Press, New York (1990)

    Google Scholar 

  • Lee, M.A.: Effects of cosmic rays and interstellar gas on the dynamics of the solar wind. In: Jokipii, J.R., Sonnett, C.P., Giampapa M.S. (eds.) Cosmic winds and the heliosphere, p. 857. University of Arizona Press, Tucson (1995)

    Google Scholar 

  • Linde, T.J., Gombosi, T.I., Roe, P.L., Powell, K.G., DeZeeuw, D.L.: Heliosphere in the magnetized local interstellar medium: results of a three-dimensional MHD simulation. J. Geophys. Res. 103, 1889–1904 (1998)

    Article  ADS  Google Scholar 

  • McComas, D.J., Elliott, H.A., Schwadron, N.A., Gosling, J.T., Skoug, R.M., Goldstein, B.E.: The three-dimensional solar wind around solar maximum. Geophys. Res. Lett. 30, 1517–1520 (2003). doi:10.1029/2003GL017136

    Article  ADS  Google Scholar 

  • Neugebauer, M., Snyder, C.W.: Solar plasma experiment. Science. 138, 1095–1097 (1962)

    Article  ADS  Google Scholar 

  • Ogilvie, K.W. Hirshberg, J.: The solar cycle variation of the solar wind helium abundance. J. Geophys. Res. 79, 4959 (1974)

    Google Scholar 

  • Ogilvie, K.W., Steinberg, J.T., Fitzenreiter, R.J., Owen, C.J., Lazarus, A.J., Farrell, W.M., Torbert, R.B.: Observations of the lunar plasma wake from the WIND spacecraft on December 27, 1994. Geophys. Res. Lett. 23, 1255–1258 (1996)

    Article  ADS  Google Scholar 

  • Opher, M., Stone, E.C., Liewer P.C.: The effects of a local interstellar magnetic field on Voyager 1 and 2 observations. Astrophys. J. 640, L71–L74 (2006)

    Article  ADS  Google Scholar 

  • Opher, M., Stone, E.C., Gombosi, T.I.: The orientation of the local interstellar magnetic field. Science. 316, 875–878 (2007). doi: 10.1126/science.1139480

    Article  ADS  Google Scholar 

  • Parker, E.N.: Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664–676 (1958)

    Article  ADS  Google Scholar 

  • Pogorelov, N.V., Zank, G.P., Ogino, T.: Three-dimensional features of the outer heliosphere due to coupling between the interstellar and interplanetary magnetic fields. I. Magnetohydrodynamic model: interstellar perspective. Astrophys. J. 614, 1007–1021 (2004)

    Google Scholar 

  • Pogorelov, N.V., Zank, G.P.: The direction of the neutral hydrogen velocity in the inner heliosphere as a possible interstellar magnetic field compass field compass. Astrophys. J. 636, L161–L164 (2006)

    Article  ADS  Google Scholar 

  • Ratkiewicz, R., Barnes, A., Molvik, G.A., Spreiter, J.R., Stahara, S.S., Vinokur, M., Venkateswaran, S.: Effect of varying strength and orientation of local interstellar magnetic field on configuration of exterior heliosphere: 3D MHD simulations. Astron. Astrophys. 335, 363–369 (1998)

    ADS  Google Scholar 

  • Richardson, J.D., Paularena, K.I., Belcher, J.W., Lazarus, A.J.: Solar wind oscillations with a 1.3 year period. Geophys. Res. Lett. 21, 1559–1560 (1994)

    Article  ADS  Google Scholar 

  • Richardson, J.D., Paularena, K.I., Lazarus, A.J., Belcher, J.W.: Evidence for a solar wind slowdown in the outer heliosphere? Geophys. Res. Lett. 22, 1469–1472 (1995)

    Article  ADS  Google Scholar 

  • Richardson, J.D., Liu, Y., Wang, C., McComas, D.J.: Determining the LIC H density from the solar wind slowdown. Astron. Astrophys. 491, 1–5 (2008a)

    Article  ADS  Google Scholar 

  • Richardson, J.D., Kasper, J.C., Wang, C., Belcher, J.W., Lazarus, A.J.: (2008b) Termination shock decelerates upstream solar wind but heliosheath plasma is cool. Nature. 454, 63–66 (2008b)

    Article  ADS  Google Scholar 

  • Silverman, S.M.: Secular variation of the aurora for the past 500 years. Rev. Geophys. 30, 333–351 (1992)

    Article  ADS  Google Scholar 

  • Smith, C.W., Isenberg, P.A., Matthaeus, W.H., Richardson, J.D.: Turbulent Heating of the solar wind by newborn interstellar pickup protons. Astrophys J. 638, 508–517 (2006)

    Article  ADS  Google Scholar 

  • Stone, E.C., Cummings, A.C., McDonald, F.B., Heikkila, B., Lal, N., Webber, W.R.: Voyager 1 explores the termination shock region and the heliosheath beyond. Science. 309, 2017–2020 (2005)

    Article  ADS  Google Scholar 

  • Stone, E.C., et al.: Voyager 2 finds an asymmetric termination shock and explores the heliosheath beyond. Nature. 454, 71–74 (2008)

    Article  ADS  Google Scholar 

  • Wang, C., Belcher, J.W.: The heliospheric boundary response to large scale solar wind fluctuations: a gasdynamic model with pickup ions. J. Geophys. Res. 104, 549–556 (1998)

    Article  ADS  Google Scholar 

  • Zank, G.P., Müller, H.-R.: The dynamical heliosphere. J. Geophys. Res. 108, (2003). doi: 10.1029/2002JA009689

    Google Scholar 

  • Zank, G.P., Pauls, H.L., Cairns, I.H., Webb, G.M.: Interstellar pick-up ions and perpendicular shocks: implications for the termination shock and interplanetary shocks. J. Geophys. Res. 101, 457–577 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported under NASA contract 959203 from JPL to MIT (Voyager), by NNX08AE49G (Wind), and NASA OPR grant NNX08AC04G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Richardson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Richardson, J.D. (2010). The Solar Wind and Its Interaction with the Interstellar Medium. In: Gopalswamy, N., Hasan, S., Ambastha, A. (eds) Heliophysical Processes. Astrophysics and Space Science Proceedings. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11341-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11341-3_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11340-6

  • Online ISBN: 978-3-642-11341-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics