Skip to main content

Global Optimization: A Quadratic Programming Perspective

  • Chapter
  • First Online:
Nonlinear Optimization

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 1989))

Abstract

Global optimization is a highly active research field in the intersection of continuous and combinatorial optimization (a basic web search delivers overa million hits for this phrase and for its British cousin, Global Optimisation).A variety of methods have been devised to deal with this problem class, which – borrowing biological taxonomy terminology in a very superficial way – may be divided roughly into the two domains of exact/rigorous methods and heuristics, the difference between them probably being that you can prove less theorems in the latter domain. Breaking the domain of exact methods into two phyla of deterministic methods and stochastic methods, we may have the following further taxonomy of the deterministic phylum:

$$ \begin{array}{lll} {{\rm exhaustive methods}\left\{ {\begin{array}{lll} {{\rm passive/direct, streamlined enumeration}} \\ {{\rm homotopy, trajectory methods}} \\ \end{array}} \right.} \\ {{\rm methods using global structure}\left\{ {\begin{array}{lll} {{\rm smoothing, filling, parameter continuation}} \\ {{\rm hierarchical funnel, difference - of - convex}} \\ \end{array}} \right.} \\ {{\rm iterative improvement methods}\left\{ {\begin{array}{lll} {{\rm escape, tunneling, deflation, aux}{\rm .functions}} \\ {{\rm successive approximation, minorants}} \\ \end{array}} \right.} \\ \end{array} $$

implicit enumeration methods: branch & bound

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anstreicher, K., and S. Burer, D.C. Versus Copositive Bounds for Standard QP, J. Global Optimiz., 33, 2005, 299–312.

    Article  MathSciNet  MATH  Google Scholar 

  2. Bomze, I.M., Remarks on the recursive structure of copositivity, J. Inf. & Optimiz. Sciences, 8, 1987, 243–260.

    MathSciNet  MATH  Google Scholar 

  3. Bomze, I.M., Copositivity conditions for global optimality in indefinite quadratic programming problems, Czechoslovak J. Operations Research 1, 1992, 7–19.

    MATH  Google Scholar 

  4. Bomze, I.M., Block pivoting and shortcut strategies for detecting copositivity, Linear Alg. Appl. 248, 1996, 161–184.

    Article  MathSciNet  MATH  Google Scholar 

  5. Bomze, I.M., Evolution towards the maximum clique, J. Global Optimiz., 10, 1997, 143–164.

    Article  MathSciNet  MATH  Google Scholar 

  6. Bomze, I.M., On standard quadratic optimization problems, J. Global Optimiz., 13, 1998, 369–387.

    Article  MathSciNet  MATH  Google Scholar 

  7. Bomze, I.M., Linear-time detection of copositivity for tridiagonal matrices and extension to block-tridiagonality, SIAM J. Matrix Anal. Appl. 21, 2000, 840–848.

    Article  MathSciNet  MATH  Google Scholar 

  8. Bomze, I.M., Branch-and-bound approaches to standard quadratic optimization problems, J. Global Optimiz., 22, 2002, 17–37.

    Article  MathSciNet  MATH  Google Scholar 

  9. Bomze, I.M., Portfolio selection via replicator dynamics and projection of indefinite estimated covariances, Dynamics of Continuous, Discrete and Impulsive Systems B 12, 2005, 527–564.

    MathSciNet  MATH  Google Scholar 

  10. Bomze, I.M., Perron-Frobenius property of copositive matrices, and a block copositivity criterion, Linear Algebra and its applications, 429, 2008, 68–71.

    Article  MathSciNet  MATH  Google Scholar 

  11. Bomze, I.M., and G. Danninger, A global optimization algorithm for concave quadratic problems, SIAM J. Optimiz., 3, 1993, 836–842.

    MathSciNet  Google Scholar 

  12. Bomze, I.M., M. Dür, E. de Klerk, A. Quist, C. Roos, and T. Terlaky, On copositive programming and standard quadratic optimization problems, J. Global Optimiz., 18, 2000, 301–320.

    Article  MATH  Google Scholar 

  13. Bomze, I.M., and E. de Klerk, Solving standard quadratic optimization problems via linear,semidefiniteandcopositiveprogramming, J. GlobalOptimiz., 24, 2002, 163–185.

    MATH  Google Scholar 

  14. Bomze, I.M., F. Frommlet, and M. Rubey, Improved SDP bounds for minimizing quadratic functions over the ℓ 1 -ball, Optimiz. Letters, 1, 2007, 49–59.

    MathSciNet  MATH  Google Scholar 

  15. Bomze, I.M., M. Locatelli, and F. Tardella, Efficient and cheap bounds for (standard) quadratic optimization, Technical Report dis tr 2005/10, 2005, Dipartimento di Informatica e Sistemistica “Antonio Ruberti”, Universitá degli Studi di Roma “La Sapienza”, available at www.optimization-online.org/DB_HTML/2005/07/1176.html, last accessed 12 May 2006.

  16. Bomze, I.M., M. Locatelli, and F. Tardella, New and old bounds for standard quadratic optimization: dominance, equivalence and incomparability, Math. Programming. 115, 2008, 31–64.

    Article  MathSciNet  MATH  Google Scholar 

  17. Bomze, I.M., and L. Palagi, Quartic formulation of standard quadratic optimization problems, J. Global Optimiz., 32, 2005, 181–205.

    Article  MathSciNet  MATH  Google Scholar 

  18. Bomze, I.M., and V. Stix, Genetical engineering via negative fitness: evolutionary dynamics for global optimization, Annals of O.R. 89, 1999, 279–318.

    MathSciNet  Google Scholar 

  19. Bonnans, J. F. and C. Pola, A trust region interior point algorithm for linearly constrained optimization, SIAM J. Optim., 7, 1997, 717–731.

    MathSciNet  MATH  Google Scholar 

  20. Borwein, J.M., Necessary and sufficient conditions for quadratic minimality, Numer. Funct. Anal. and Optimiz., 5, 1982, 127–140.

    Article  MATH  Google Scholar 

  21. Boyd, S., and L. Vandenberghe, Convex Optimization, Cambridge Univ. Press, Cambridge, UK., 2004.

    MATH  Google Scholar 

  22. Burer, S., On the copositive representation of binary and continuous nonconvex quadratic programs, preprint, 2006, Univ. of Iowa, available at http://www.optimization-online.org/DB_FILE/2006/10/1501.pdf, last accessed Jan. 08, to appear in: Math Programming (2009).

  23. Contesse B., L., Une caractérisation complète des minima locaux en programmation quadratique, Numer. Math. 34, 1980, 315–332.

    Article  MathSciNet  MATH  Google Scholar 

  24. Cottle, R.W., J.-S. Pang, and R.E. Stone, The Linear Complementarity Problem. Academic Press, New York., 1992.

    MATH  Google Scholar 

  25. Danninger, G., A recursive algorithm for determining (strict) copositivity of a symmetric matrix, in: U. Rieder et al. (eds.), Methods of Operations Research 62, 1990,45–52. Hain, Meisenheim.

    Google Scholar 

  26. Danninger, G., Role of copositivity in optimality criteria for nonconvex optimization problems, J. Optimiz. Theo. Appl. 75, 1992,535–558.

    Article  MathSciNet  MATH  Google Scholar 

  27. Danninger, G., and I.M. Bomze, Using copositivity for global optimality criteria in concave quadratic programming problems, Math. Programming 62, 1993, 575–580.

    Article  MathSciNet  MATH  Google Scholar 

  28. de Klerk, E., The complexity of optimizing over a simplex, hypercube or sphere: a short survey,, Central European J. OR 16, 2008,111–128.

    Article  MATH  Google Scholar 

  29. de Klerk, E., and D.V. Pasechnik, Approximation of the stability number of a graph via copositive programming, SIAM J. Optimiz. 12, 2002, 875–892.

    MATH  Google Scholar 

  30. Diananda, P.H., On non-negative forms in real variables some or all of which are non-negative, Proc. Cambridge Philos. Soc. 58, 1962, 17–25.

    Article  MathSciNet  MATH  Google Scholar 

  31. Dür, M., Duality in Global Optimization – Optimality conditions and algorithmical aspects. Shaker, Aachen, 1999.

    Google Scholar 

  32. Dür, M., A parametric characterization of local optimality, Math. Methods Oper. Res. 57, 2003, 101–109.

    Article  MathSciNet  MATH  Google Scholar 

  33. Dür, M., and G. Still, Interior points of the completely positive cone, Electronic J. Linear Algebra 17, 2008,48–53.

    MATH  Google Scholar 

  34. Fisher, R.A., The Genetical Theory of Natural Selection. Clarendon Press, Oxford, 1930.

    MATH  Google Scholar 

  35. Gonzaga, C.C. and L.A. Carlos, A primal affine scaling algorithm for linearly constrained convex programs, Tech. Report ES-238/90, COPPE Federal Univ.Rio de Janeiro, 1990.

    Google Scholar 

  36. Hadeler, K.P. On copositive matrices, Linear Alg. Appl. 49, 1983, 79–89.

    Article  MathSciNet  MATH  Google Scholar 

  37. Hall, M. Jr., and M. Newman Copositive and Completely Positive Quadratic Forms, Proc. Cambridge Philos. Soc. 59, 1963, 329–339.

    Article  MathSciNet  MATH  Google Scholar 

  38. Hiriart-Urruty, J.-B., From Convex Optimization to Nonconvex Optimization, Part I: Necessary and sufficient conditions for Global Optimality, in: F.H. Clarke et al. (eds.), Nonsmooth Optimization and Related Topics, 1989, 219–239, Plenum Press, New York.

    Google Scholar 

  39. Hiriart-Urruty, J.-B., and C. Lemaréchal, Testing necessary and sufficient conditions for global optimality in the problem of maximizing a convex quadratic function over a convex polyhedron, Preliminary report, University Paul Sabatier, Toulouse, 1990.

    Google Scholar 

  40. Hiriart-Urruty, J.-B., and C. Lemaréchal, Convex Analysis and Minimization Algorithms II. Grundlehren der Mathematik 306, Springer, Berlin, 1996.

    Google Scholar 

  41. Hofbauer, J. and Sigmund, K., Evolutionary Games and Population Dynamics, Cambridge University Press, Cambridge, UK, 1998.

    Book  MATH  Google Scholar 

  42. Horst, R., and H. Tuy, Global optimization – deterministic approaches. Springer, Berlin, 1991.

    Google Scholar 

  43. Ikramov, Kh.D., Linear-time algorithm for verifying the copositivity of an acyclic matrix, Comput. Math. Math. Phys. 42, 2002, 1701–1703.

    MathSciNet  Google Scholar 

  44. Johnson, C.R., and R. Reams, Spectral theory of copositive matrices, Linear Algebra and its Applications 395, 2005, 275–281.

    Article  MathSciNet  MATH  Google Scholar 

  45. Lasserre, J.B., Global optimization with polynomials and the problem of moments, SIAM Journal on Optimization 11, 2001, 796–817.

    Article  MathSciNet  MATH  Google Scholar 

  46. Lasserre, J.B., An explicit exact SDP relaxation for nonlinear 0-1 programming, In: K. Aardal and A.H.M. Gerards, eds., Lecture Notes in Computer Science 2081, 2001, 293–303.

    Google Scholar 

  47. Lyubich, Yu., G. D. Maistrowskii, and Yu. G. Ol’khovskii, Selection-induced convergence to equilibrium in a single-locus autosomal population, Problems of Information Transmission, 16, 1980, 66–75.

    MATH  Google Scholar 

  48. Majthay, A., Optimality conditions for quadratic programming, Math. Programming, 1, 1971, 359–365.

    Article  MathSciNet  MATH  Google Scholar 

  49. Monteiro, R. D. C. and Y. Wang, Y., Trust region affine scaling algorithms for linearly constrained convex and concave programs, Math. Programming. 80, 1998, 283–313.

    MathSciNet  MATH  Google Scholar 

  50. Moran, P. A. P., The Statistical Processey, Oxford, Clarendon Press, 1962.

    Google Scholar 

  51. Motzkin, T.S., and E.G. Straus, Maxima for graphs and a new proof of a theorem of Turán, Canadian J. Math. 17, 1965,533–540.

    MathSciNet  MATH  Google Scholar 

  52. Murty, K.G., and S.N. Kabadi, Some NP-complete problems in quadratic and linear programming, Math. Programming 39, 1987, 117–129.

    Article  MathSciNet  MATH  Google Scholar 

  53. Nesterov, Y.E., Global Quadratic Optimization on the Sets with Simplex Structure, Discussion paper 9915, CORE, Catholic University of Louvain, Belgium, 1999.

    Google Scholar 

  54. Nesterov, Y.E., and A. Nemirovski, Interior Point Polynomial Algorithms in Convex Programming. SIAM Publications. SIAM, Philadelphia, USA, 1994.

    Book  MATH  Google Scholar 

  55. Ozdaglar, A., and P. Tseng, Existence of Global Minima for Constrained Optimization, J. Optimiz. Theo. Appl. 128, 2006, 523–546.

    Article  MathSciNet  MATH  Google Scholar 

  56. Parrilo, P.A., Structured Semidefinite Programs and Semi-algebraic Geometry Methods in Robustness and Optimization, PhD thesis, California Institute of Technology, Pasadena, USA, 2000. Available at: http://www.cds.caltech.edu/ \(\tilde{}\) pablo/.

  57. Parrilo, P.A., Semidefinite programming relaxations for semi-algebraic problems, Math. Programming 696B, 2003, 293–320.

    Article  MathSciNet  Google Scholar 

  58. Pavan, M., and M. Pelillo, Dominant sets and pairwise clustering, IEEE Trans. on Pattern Analysis and Machine Intelligence, 29, 2007, 167–172.

    Article  Google Scholar 

  59. Pelillo, M., Matching free trees, maximal cliques, and monotone game dynamics, IEEE Trans. Pattern Anal. Machine Intell., 24, 2002, 1535–1541.

    Article  Google Scholar 

  60. Peña J., J. Vera, and L. Zuluaga, Computing the stability number of a graph via linear and semidefinite programming, SIAM J. Optimiz., 18, 2007, 87–105.

    Article  MATH  Google Scholar 

  61. Poljak, S., and Z. Tuza, Maximum cuts and largest bipartite subgraphs, in: W. Cook, L. Lovasz, and P. Seymour (eds.), Combinatorial Optimization, 1995, pp. 181–244, American Mathematical Society, Baltimore.

    Google Scholar 

  62. Scozzari, A., and F. Tardella, A clique algorithm for standard quadratic programming, 2008, to appear in Discrete Applied Mathematics.

    Google Scholar 

  63. Sun, J., A convergence proof for an affine-scaling algorithm for convex quadratic programming without nondegeneracy assumptions, Math. Programming 60, 1993, 69–79.

    Article  MathSciNet  MATH  Google Scholar 

  64. Tseng, P., Convergence properties of Dikin’s affine scaling algorithm for nonconvex quadratic minimization, J. Global Optim., 30, 2004, 285–300.

    Article  MathSciNet  MATH  Google Scholar 

  65. Tseng, P., A scaled projected reduced-gradient method for linearly constrained smooth optimization, preprint, 2007, Univ. of Washington.

    Google Scholar 

  66. Tseng, P., I.M. Bomze, W. Schachinger, A first-order interior-point method for Linearly Constrained Smooth Optimization, preprint, 2007, to appear in: Math Programming (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Immanuel M. Bomze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bomze, I.M. (2010). Global Optimization: A Quadratic Programming Perspective. In: Di Pillo, G., Schoen, F. (eds) Nonlinear Optimization. Lecture Notes in Mathematics(), vol 1989. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11339-0_1

Download citation

Publish with us

Policies and ethics