Skip to main content

Frontiers and Emerging Procedures

  • Chapter
Interventional Pericardiology

Abstract

The ability to access the normal pericardium in the absence of any effusion induced increasing interest in the pericardial space as a location of and novel approach for various cardiac and intrapericardial applications. Intrapericardial drug delivery may be superior to other routes in special indications. Medication applied intrapericardially will maintain the effective concentration for a longer time. Drugs given in the pericardial space may access the vessel wall and the myocardial tissue directly for a much longer time, but also more predictably and consistently than by an intracoronary or intravenous injection [1]. The intrapericardial route might have additional important advantages for the application of pharmacological agents like an easier access to perivascular tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stoll HP, Carlson K, Keefer LK, Hrabie JA, March KL. Pharmacokinetics and consistency of pericardial delivery directed to coronary arteries: direct comparison with endoluminal delivery. Clin Cardiol 1999; 22 (1 Suppl 1): I10–16

    Article  PubMed  CAS  Google Scholar 

  2. Ware JA, Simons M. Angiogenesis in ischemic heart disease. Nat Med 1997; 3: 158–164

    Article  PubMed  CAS  Google Scholar 

  3. Lewis BS, Flugelman MY, Weisz A, Keren-Tal I, Schaper W. Angiogenesis by gene therapy: a new horizon for myocardial revascularization? Cardiovasc Res 1997; 35: 490–497

    Article  PubMed  CAS  Google Scholar 

  4. Waltenberger J. Modulation of growth factor action: implications for the treatment of cardiovascular diseases. Circulation 1997; 96: 4083–4094

    PubMed  CAS  Google Scholar 

  5. Lazarous DF, Shou M, Stiber JA, Dadhania DM, Thirumurti V, Hodge E, Unger EF. Pharmacodynamics of basic fibroblast growth factor: route of administration determines myocardial and systemic distribution. Cardiovasc Res 1997; 36: 78–85

    Article  PubMed  CAS  Google Scholar 

  6. Howell SB, Chu BB, Wung WE, Metha BM, Mendelsohn J. Long-duration intracavitary infusion of methotrexate with systemic leucovorin protection in patients with malignant effusions. J Clin Invest 1981; 67: 1161–1170

    Article  PubMed  CAS  Google Scholar 

  7. Arndt JO, Pasch U, Samodelov LF, et al. Reversible blockade of myelinated and non-myelinated cardiac afferents in cats by instillation of procaine into the pericardium. Cardiovasc Res 1981; 25: 61–67

    Article  Google Scholar 

  8. Samodelov LF, Pohl M, Arndt JO. Reversible blockade of cardiac efferents with procaine instilled into the pericardium of cats. Cardiovasc Res 1982; 16: 187–193

    Article  PubMed  CAS  Google Scholar 

  9. Dorward PK, Flaim M, Ludbrook J. Blockade of cardiac nerves by intrapericardial local anesthetics in the conscious rabbit. Aust J Exp Biol Med Sci 1983; 61(pt 2): 219–230

    PubMed  Google Scholar 

  10. DiCarlo SE, Bishop VS. Regional vascular resistance during exercise: role of cardiac afferents and exercise training. Am J Physiol 1990; 258: H842–847

    PubMed  CAS  Google Scholar 

  11. Miyazaki T, Pride HP, Zipes DP. Modulation of cardiac autonomic neurotransmission by epicardial superperfusion: effects of hexamethonium and tetrodotoxin. Circ Res 1989; 65: 1212–1219

    PubMed  CAS  Google Scholar 

  12. O’Donnell CP, Scheuer DA, Keil LC, et al. Cardiac nerve blockade by infusion of procaine into the pericardial space of conscious dogs. Am J Physiol 1991; 260: R1176–1182

    PubMed  Google Scholar 

  13. Evans RG, Hayes IP, Ludbrook J, et al. Factors confounding blockade of cardiac afferents by intrapericardial procaine in conscious rabbits. Am J Physiol 1993; 264: H1861–1870

    PubMed  CAS  Google Scholar 

  14. Waxman S, Moreno R, Rowe KA, et al. Persistent primary coronary dilation induced by transatrial delivery of nitroglycerin into the pericardial space: a novel approach for local cardiac drug delivery. J Am Coll Cardiol 1999; 33: 2073–2077

    Article  PubMed  CAS  Google Scholar 

  15. Rodrigues AC, d’Avila A, Houghtaling C, Ruskin JN, Picard M, Reddy VY. Intrapericardial echocardiography: a novel catheter-based approach to cardiac imaging. J Am Soc Echocardiogr 2004; 17(3): 269–274

    Article  PubMed  Google Scholar 

  16. Rodrigues AC. Intrapericardial echocardiography: a novel catheter-based approach to cardiac imaging. In: Natale A (ed) Intracardiac echocardiography in interventional electrophysiology. Abingdon [U.K.]: Informa Healthcare, 2006, pp 88–94

    Google Scholar 

  17. Horowitz BN, Vaseghi M, Mahajan A, et al. Percutaneous intrapericardial echocardiography during catheter ablation: a feasibility study. Heart Rhythm 2006; 3(11): 1275–1282

    Article  PubMed  Google Scholar 

  18. Sosa E, Scanavacca M, d’Avila A, Pilleggi F. A new technique to perform epicardial mapping in the electrophysiology laboratory. J Cardiovasc Electrophysiol 1996; 7(6): 531–536

    Article  PubMed  CAS  Google Scholar 

  19. Sosa E, Scanavacca M, d’Avila A.Different ways of approaching the normal pericardial space. Circulation 1999; 100(24): e115–116

    PubMed  CAS  Google Scholar 

  20. Sosa E, Scanavacca M, d’Avila A. Gaining access to the pericardial space. Am J Cardiol 2002; 90(2): 203–204

    Article  PubMed  Google Scholar 

  21. Furnary AP, Siqueira C Jr, Lowe RI, Thigpen T, Wu Y, Floten HS. Initial clinical trial of substernal epicardial echocardiography: seeing a new window to the postoperative heart. Ann Thorac Surg 2001; 72: 1077–1082

    Article  Google Scholar 

  22. Spodick DH. Intrapericardial therapy and diagnosis. Curr Cardiol Rep 2002; 4(1): 22–25

    Article  PubMed  Google Scholar 

  23. Willerson JT, Igo SR, Yao SK, Ober JC, Macris MP, Ferguson JJ. Localized administration of sodium nitroprusside enhances its protection against platelet aggregation in stenosed and injured coronary arteries. Tex Heart Inst J 1996; 23(1): 1–8

    PubMed  CAS  Google Scholar 

  24. Kumar K, Nguyen K, Waxman S, et al. Potent antifibrillatory effects of intrapericardial nitroglycerin in the ischemic porcine heart. J Am Coll Cardiol 2003; 41(10): 1831–1837

    Article  PubMed  CAS  Google Scholar 

  25. Baek SH, Hrabie JA, Keefer LK, et al. Augmentation of intrapericardial nitric oxide level by a prolonged-release nitric oxide donor reduces luminal narrowing after porcine coronary angioplasty. Circulation 2002; 105: 2779–2784

    Article  PubMed  CAS  Google Scholar 

  26. Borer JS, Kent KM, Goldstein RE, Epstein SE. Nitroglycerininduced reduction in the incidence of spontaneous ventricular fibrillation during coronary occlusion in dogs. Am J Cardiol 1974; 33: 517–520

    Article  PubMed  CAS  Google Scholar 

  27. Kent KM, Smith ER, Redwood DR, Epstein SE. Beneficial electrophysiologic effects of nitroglycerin during acute myocardial infarction. Am J Cardiol 1974; 33: 513–516

    Article  PubMed  CAS  Google Scholar 

  28. Dashkoff N, Roland J-MA, Varghese PJ, Pitt B. Effect of nitroglycerin on ventricular fibrillation threshold of nonischemic myocardium. Am J Cardiol 1976; 38: 184–188

    Article  PubMed  CAS  Google Scholar 

  29. Stockman MB, Verrier RL, Lown B. Effect of nitroglycerin on vulnerability to ventricular fibrillation during myocardial ischemia and reperfusion. Am J Cardiol 1979; 43: 233–238

    Article  PubMed  CAS  Google Scholar 

  30. Engelman DT, Watanabe M, Maulik N, et al. L-arginine reduces endothelial inflammation and myocardial stunning during ischemia/reperfusion. Ann Thorac Surg 1995; 60: 1275–1281

    Article  PubMed  CAS  Google Scholar 

  31. Hoelzer M, Schaal SF, Leier CV. Electrophysiologic and antiarrhythmic effects of nitroglycerin in man. J Cardiovasc Pharmacol 1981; 3: 917–923

    Article  PubMed  CAS  Google Scholar 

  32. Bussmann WD, Neumann K, Kaltenbach M. Effects of intravenous nitroglycerin on ventricular ectopic beats in acute myocardial infarction. Am Heart J 1984; 107: 940–944

    Article  PubMed  CAS  Google Scholar 

  33. Margonato A, Bonetti F, Mailhac A, Vicedomini G, Cianflone D, Chierchia SL. Intravenous nitroglycerin suppresses exercise-induced arrhythmias in patients with ischaemic heart disease: implications for long-term treatment. Eur Heart J 1991; 12: 1278–1282

    Article  PubMed  CAS  Google Scholar 

  34. Armstrong JA, Slaughter SE, Marks GS, Armstrong PW. Rapid disappearance of nitroglycerin following incubation with human blood. Can J Physiol Pharmacol 1980; 58: 459–462

    Article  PubMed  CAS  Google Scholar 

  35. Fei L, Baron AD, Henry DP, et al. Intrapericardial delivery of L-arginine reduces the increased severity of ventricular arrhythmias during sympathetic stimulation in dogs with acute coronary occlusion. Nitric oxide modulates sympathetic effects on ventricular electrophysiological properties. Circulation 1997; 96: 4044–4049

    PubMed  CAS  Google Scholar 

  36. Ayers GM, Rho TH, Ben-David J, et al. Amiodarone instilled into the canine pericardial sac migrates transmurally to produce electrophysiologic effects and suppress atrial fibrillation. J Cardiovasc Electrophysiol 1996; 7: 713–721

    Article  PubMed  CAS  Google Scholar 

  37. Miyazaki T, Zipes DP. Pericardial prostaglandin biosynthesis prevents the increased incidence of reperfusioninduced ventricular fibrillation produced by efferent sympathetic stimulation in dogs. Circulation 1990; 82: 1008–1019

    Article  PubMed  CAS  Google Scholar 

  38. Avitall B, Hare J, Zander G, et al. Iontophoretic transmyocardial drug delivery: a novel approach to antiarrhythmic drug therapy. Circulation 1992; 85: 1582–1593

    PubMed  CAS  Google Scholar 

  39. Moreno R, Waxman S, Rowe K, Verrier RL. Intrapericardial beta-adrenergic blockade with esmolol exerts a potent antitachycardic effect without depressing contractility. J Cardiovasc Pharmacol 2000; 36(6): 722–727

    Article  PubMed  CAS  Google Scholar 

  40. Lew MJ, Ludbrook J, Pavia JM, et al. Selective manipulation of neurohumoral control of the cardiac pacemaker by drugs given intrapericardially. J Pharmacol Meth 1987; 17: 137–148

    Article  CAS  Google Scholar 

  41. Wiest D. Esmolol. A review of its therapeutic efficacy and pharmacokinetic characteristics. Clin Pharmacokinet 1995; 28: 190–202

    Article  PubMed  CAS  Google Scholar 

  42. Takada M, Dohi S, Akamatsu S, Suzuki A. Effects of pericardial lidocaine on hemodynamic parameters and responses in dogs anesthetized with midazolam and fentanyl. J Cardiothorac Vasc Anesth 2007; 21(3): 393–399

    Article  PubMed  CAS  Google Scholar 

  43. Kolettis TM, Kazakos N, Katsouras CS, et al. Intrapericardial drug delivery: pharmacologic properties and long-term safety in swine. Int J Cardiol 2005; 99(3): 415–421

    Article  PubMed  Google Scholar 

  44. Gillis AM, Duff HJ, Mitchell LB, Wyse DG. Myocardial uptake and pharmacodynamics of procainamide in patients with coronary heart disease and sustained ventricular tachyarrhythmias. J Pharmacol Exp Ther 1993; 266: 1001–1006

    PubMed  CAS  Google Scholar 

  45. Ujhelyi MR, Hadsall KZ, Euler DE, Mehra R. Intrapericardial therapeutics: a pharmacodynamic and pharmacokinetic comparison between pericardial and intravenous procainamide delivery. Cardiovasc Electrophysiol 2002; 13: 605–611

    Article  Google Scholar 

  46. Greene M, Newman D, Geist M, Paquette M, Heng D, Dorian P. Is electrical storm in ICD patients the sign of a dying heart? Outcome of patients with clusters of ventricular tachyarrhythmias. Europace 2000; 2: 263–269

    Article  PubMed  CAS  Google Scholar 

  47. Hou D, Rogers PI, Toleikis PM, et al. Intrapericardial paclitaxel delivery inhibits neointimal proliferation and promotes arterial enlargement after porcine coronary overstretch. Circulation 2000; 102: 1575–1581

    PubMed  CAS  Google Scholar 

  48. Heldman AW, Cheng L, Jenkins GM, et al. Paclitaxel stent coating inhibits neointimal hyperplasia at 4 weeks in a porcine model of coronary restenosis. Circulation 2001; 103(18): 2289–2295

    PubMed  CAS  Google Scholar 

  49. Lansky AJ, Costa RA, Mintz GS, et al. Non-polymer-based paclitaxel-coated coronary stents for the treatment of patients with de novo coronary lesions: angiographic follow-up of the DELIVER clinical trial. Circulation 2004; 109(16): 1948–1954

    Article  PubMed  CAS  Google Scholar 

  50. Hou D, Zhang P, Marsh AE, March KL. Intrapericardial ethanol delivery inhibits neointimal proliferation after porcine coronary overstretch. J Chin Med Assoc 2003; 66(11): 637–642

    PubMed  Google Scholar 

  51. French B, Mazur W, Geske R, Bolli R. Direct in vivo gene transfer into porcine myocardium using replication-deficient adenoviral vectors. Circulation 1994; 90: 2414–2424

    PubMed  CAS  Google Scholar 

  52. Kypson AP, Peppel K, Akhter SA, et al. Ex vivo adenovirusmediated gene transfer to the adult rat heart. J Thorac Cardiovasc Surg 1998; 115(3): 623–630

    Article  PubMed  CAS  Google Scholar 

  53. Fromes Y, Salmon A, Wang X, et al. Gene delivery to the myocardium by intrapericardial injection. Gene Ther 1999; 6(4): 683–688

    Article  PubMed  CAS  Google Scholar 

  54. Roques C, Salmon A, Fiszman MY, Fattal E, Fromes Y. Intrapericardial administration of novel DNA formulations based on thermosensitive Poloxamer 407 gel. Int J Pharm 2007; 331(2): 220–223

    Article  PubMed  CAS  Google Scholar 

  55. Donahue JK, Kikkawa K, Johns DC, Marban E, Lawrence JH. Ultrarapid, highly efficient viral gene transfer to the heart. Proc Natl Acad Sci USA 1997; 94(9): 4664–4668

    Article  PubMed  CAS  Google Scholar 

  56. Lazarous DF, Shou M, Stiber JA, et al. Adeno-viral-mediated gene transfer induces sustained pericardial VEGF expression in dogs: effect on myocardial angiogenesis. Cardiovasc Res 1999; 44(2): 294–302

    Article  PubMed  CAS  Google Scholar 

  57. Schaper W, Ito W. Molecular mechanisms of collateral vessel growth. Circ Res 1996; 79: 911–919

    PubMed  CAS  Google Scholar 

  58. Simons M, Laham RJ. Therapeutic angiogenesis in myocardial ischemia. In: Ware J, Simons M (eds) Angiogenesis and cardiovascular disease. Oxford University Press, New York, 1999, pp 289–320

    Google Scholar 

  59. Laham RJ, Rezaee M, Post M, Xu X, Sellke FW. Intrapericardial administration of basic fibroblast growth factor: myocardial and tissue distribution and comparison with intracoronary and intravenous administration. Catheter Cardiovasc Interv 2003; 58(3): 375–381

    Article  PubMed  Google Scholar 

  60. Matthews KG, Devlin GP, Stuart SP, et al. Intrapericardial IGF-I improves cardiac function in an ovine model of chronic heart failure. Heart Lung Circ 2005; 14(2): 98–103

    Article  PubMed  CAS  Google Scholar 

  61. Soonpaa MH, Kim KK, Pajak L, et al. Cardiomyocyte DNA synthesis and binucleation during murine development. Am J Physiol 1996; 271: H2183–2189

    PubMed  CAS  Google Scholar 

  62. Anversa P, Leri A, Kajstura J, et al. Myocyte growth and cardiac repair. J Mol Cell Cardiol 2002; 34: 91–105

    Article  PubMed  CAS  Google Scholar 

  63. Young HE. Existence of reserve quiescent stem cells in adults, from amphibians to humans. Curr Top Microbiol Immunol 2004; 280: 71–109

    Article  PubMed  CAS  Google Scholar 

  64. Hutcheson KA, Atkins BZ, Hueman MT, et al. Comparison of benefits on myocardial performance of cellular cardiomyoplasty with skeletal myoblasts and fibroblasts. Cell Transplantation 2000; 9: 359–368

    PubMed  CAS  Google Scholar 

  65. Orlic D, Kajstura J, Chimenti S, et al. Bone marrow stem cells regenerate infarcted myocardium. Pediatr Transplant 2003; 7(Suppl 3): 86–88

    Article  PubMed  Google Scholar 

  66. Nir SG, David R, Zaruba M, et al. Human embryonic stem cells for cardiovascular repair. Cardiovasc Res 2003; 58: 313–323

    Article  PubMed  CAS  Google Scholar 

  67. Menasche P. Myoblast transplantation: feasibility, safety and efficacy. Ann Med 2002; 34: 314–315

    Article  PubMed  CAS  Google Scholar 

  68. Murry CE, Soonpaa MH, Reinecke H, et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 2004; 428: 664–668

    Article  PubMed  CAS  Google Scholar 

  69. Steele A, Jones OY, Gok F, et al. Stem-like cells traffic from heart ex vivo, expand in vitro, and can be transplanted in vivo. J Heart Lung Transplant 2005; 24(11): 1930–1939

    Article  PubMed  CAS  Google Scholar 

  70. Murata H, Masuo M, Yoshimoto H, et al. Oozing type cardiac rupture repaired with percutaneous injection of fibrin-glue into the pericardial space: Case report. Jpn Circ J 2000; 64: 312–325

    Article  PubMed  CAS  Google Scholar 

  71. Wang ND, Doty DB, Doty JR, Yuksel U, Flinner R. BioGlue: a protective barrier after pericardiotomy. J Card Surg 2007; 22(4): 295–299

    Article  PubMed  Google Scholar 

  72. Ogiwara M. Treatment of left ventricular free wall rupture with fibrin-glue in dogs. Jpn J Cardiovasc Surg 1995; 24: 18–23

    Google Scholar 

  73. Hattori R, Otani H, Omiya H, et al. Fate of fibrin sealant in pericardial space. Ann Thorac Surg 2000; 70: 2132–2136

    Article  PubMed  CAS  Google Scholar 

  74. Melfi FM, Menconi GF, Chella A, Angeletti CA. The management of malignant pericardial effusions using permanently implanted devices. Eur J Cardiothorac Surg 2002; 21(2): 345–347

    Article  PubMed  Google Scholar 

  75. Patronik NA, Ota T, Zenati MA, Riviere CN. Improved traction for a mobile robot traveling on the heart. Conf Proc IEEE Eng Med Biol Soc 2006; 1: 339–342

    Article  PubMed  CAS  Google Scholar 

  76. Ota T, Patronik N, Riviere C, Zenati MA. Percutaneous subxiphoid access to the epicardium using a miniature crawling robotic device. Innovations 2006; 1(5): 227–231

    Google Scholar 

  77. Razjouyan F, Patronik NA, Zenati MA, Riviere CN. Enhancing the locomotion of an in vivo robot for cardiac surgery. Proceedings of the IEEE 32nd Annual Northeast Bioengineering Conference, April, 2006, pp 97–98

    Google Scholar 

  78. Patronik NA, Riviere CN, El Qarra S, Zenati MA. “The Heart-Lander: a novel epicardial crawling robot for myocardial injections”. Proceedings of the 19th International Congress of Computer Assisted Radiology and Surgery, Elsevier 2005; 1281C: 735–739

    Google Scholar 

  79. Patronik NA, Zenati MA, Riviere CN. Preliminary evaluation of a mobile robotic device for navigation and intervention on the beating heart. Comput Aided Surg 2005; 10(4): 225–232

    PubMed  CAS  Google Scholar 

  80. Patronik NA, Zenati MA, Riviere CN. A miniature cable-driven robot for crawling on the heart. Conf Proc IEEE Eng Med Biol Soc 2005; 6: 5771–5774

    PubMed  CAS  Google Scholar 

  81. Patronik NA, Riviere CN, Qarra SE, Zenati MA. The Heart-Lander: A Novel Epicardial Crawling Robot for Myocardial Injections. Proceedings of the 19th International Congress of Computer Assisted Radiology and Surgery, Elsevier, Vol. 1281C, June, 2005, pp 735–739

    Google Scholar 

  82. Ota T, Patronil NA, Schwarzman D, Riviere CN, Zenati MI. Minimally invasive epicardial injections using a novel semiautonomous robotic device. Circulation 2008; 118 (14 Suppl): 115–120

    Article  Google Scholar 

  83. Riviere CN, Patronik NA, Zenati MA. Prototype epicardial crawling device for intrapericardial intervention on the beating heart. Heart Surg Forum 2004; 7(6): E639–643

    Article  PubMed  Google Scholar 

  84. Patronik NA, Zenati MA, Riviere CN. Development of a tethered epicardial crawler for minimally invasive cardiac therapies. IEEE 30th Annual Northeast Bioengineering Conference, IEEE, April, 2004, pp 239–240

    Google Scholar 

  85. Sosa E, Scanavacca M, d’Avila A, Oliveira F, Ramires JAF. Nonsurgical transthoracic epicardial catheter ablation to treat recurrent ventricular tachycardia occurring late after myocardial infarction. J Am Coll Cardiol 2000; 35: 1442–1449

    Article  PubMed  CAS  Google Scholar 

  86. d’Avila A, Scanavacca M, Sosa E. Transthoracic epicardial catheter ablation of ventricular tachycardia. Heart Rhythm 2006; 3(9): 1110 1111

    Article  PubMed  Google Scholar 

  87. d’Avila A, Splinter R, Svenson RH, et al. New perspectives on catheter-based ablation of ventricular tachycardia complicating Chagas’ disease: experimental evidence of the efficacy of near infrared lasers for catheter ablation of Chagas’ VT. J Interv Card Electrophysiol 2002; 7(1): 23–38

    Article  PubMed  Google Scholar 

  88. Soejima K, Couper G, Cooper JM, Sapp JL, Epstein LM, Stevenson WG. Subxiphoid surgical approach for epicardial catheter-based mapping and ablation in patients with prior cardiac surgery or difficult pericardial access. Circulation 2004; 110(10): 1197–1201

    Article  PubMed  Google Scholar 

  89. Shivkumar K. Percutaneous epicardial ablation of atrial fibrillation. Heart Rhythm 2008; 5(1): 152–154.

    Article  PubMed  Google Scholar 

  90. Wudel JH, Chaudhuri P, Hiller JJ. Video-assisted epicardial ablation and left atrial appendage exclusion for atrial fibrillation: extended follow-up. Ann Thorac Surg 2008; 85(1): 34–38

    Article  PubMed  Google Scholar 

  91. d’Avila A, Gutierrez P, Scanavacca M, et al. Effects of radiofrequency pulses delivered in the vicinity of the coronary arteries: Implications for nonsurgical transthoracic epicardial catheter ablation to treat ventricular tachycardia. Pacing Clin Electrophysiol 2002; 25: 1488–1495

    Article  PubMed  Google Scholar 

  92. d’Avila A, Houghtaling C, Gutierrez P, et al. Catheter ablation of ventricular epicardial tissue: a comparison of standard and cooled-tip radiofrequency energy. Circulation 2004; 109(19): 2363–2369

    Article  PubMed  Google Scholar 

  93. Zenati MA, Shalaby A, Eisenman G, Nosbisch J, McGarvey J, Ota T. Epicardial left ventricular mapping using subxiphoid video pericardioscopy. Ann Thorac Surg 2007; 84(6): 2106–2107

    Article  PubMed  Google Scholar 

  94. d’Avila A, Neuzil P, Thiagalingam A, et al. Experimental efficacy of pericardial instillation of anti-inflammatory agents during percutaneous epicardial catheter ablation to prevent postprocedure pericarditis. J Cardiovasc Electrophysiol 2007; 18(11): 1178–1183

    Article  PubMed  Google Scholar 

  95. Hale SL, Kloner RA. Myocardial temperature in acute myocardial infarction: protection with mild regional hypothermia. Am J Physiol 1997; 273: H220–H227

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Medizin Verlag Heidelberg

About this chapter

Cite this chapter

Maisch, B., Ristić, A.D., Seferović, P.M., Tsang, T.S.M. (2011). Frontiers and Emerging Procedures. In: Interventional Pericardiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11335-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11335-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11334-5

  • Online ISBN: 978-3-642-11335-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics