Skip to main content

Rational Systems – Realization and Identification

  • Chapter
Three Decades of Progress in Control Sciences

Summary

In this expository paper we provide an overview of recent developments in realization theory and system identification for the class of rational systems. Rational systems are a sufficiently big class of systems to model various phenomena in engineering, physics, economy, and biology which still has a nice algebraic structure. By an algebraic approach we derive necessary and sufficient conditions for a response map to be realizable by a rational system. Further we characterize identifiability properties of rational systems with parameters. For the proofs we refer the reader to the corresponding papers.

This paper is dedicated to Christopher I. Byrnes and to Anders Lindquist for their contributions to control and system theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baillieul, J.: The geometry of homogeneous polynomial dynamical systems. Nonlinear anal., Theory, Meth. and Appl. 4(5), 879–900 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baillieul, J.: Controllability and observability of polynomial dynamical systems. Nonlinear Anal., Theory, Meth. and Appl. 5(5), 543–552 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bartosiewicz, Z.: Realizations of polynomial systems. In: Fliess, M., Hazenwinkel, M. (eds.) Algebraic and Geometric Methods in Nonlinear Control Theory, pp. 45–54. D. Reidel Publishing Company, Dordrecht (1986)

    Chapter  Google Scholar 

  4. Bartosiewicz, Z.: Rational systems and observation fields. Systems and Control Letters 9, 379–386 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bartosiewicz, Z.: Minimal polynomial realizations. Mathematics of control, signals, and systems 1, 227–237 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. i. the user language. J. Symbolic Comput. 24(3-4), 235–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Byrnes, C.I., Falb, P.L.: Applications of algebraic geometry in system theory. American Journal of Mathematics 101(2), 337–363 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cox, D., Little, J., O’Shea, D.: Ideals, varieties, and algorithms: An introduction to computational algebraic geometry and commutative algebra, 3rd edn. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  9. Denis-Vidal, L., Joly-Blanchard, G., Noiret, C.: Some effective approaches to check identifiability of uncontrolled nonlinear systems. Mathematics and computers in simulation 57, 35–44 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. REDUCE developers. REDUCE, Available at http://reduce-algebra.com

  11. Eisenbud, D., Grayson, D.R., Stillman, M.E., Sturmfels, B. (eds.): Computations in algebraic geometry with Macaulay 2. Algorithms and Computations in Mathematics, vol. 8. Springer, Heidelberg (2001)

    Google Scholar 

  12. Evans, N.D., Chapman, M.J., Chappell, M.J., Godfrey, K.R.: Identifiability of uncontrolled nonlinear rational systems. Automatica 38, 1799–1805 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Falb, P.: Methods of algebraic geometry in control theory: Part 1, Scalar linear systems and affine algebraic geometry. Birkhäuser, Boston (1990)

    MATH  Google Scholar 

  14. Falb, P.: Methods of algebraic geometry in control theory: Part 2, Multivariable linear systems and projective algebraic geometry. Birkhäuser, Boston (1999)

    Book  Google Scholar 

  15. Hermann, R.: Algebro-geometric and Lie-theoretic techniques in systems theory, Part A, Interdisciplinaty mathematics, Volume XIII. Math Sci Press, Brookline (1977)

    Google Scholar 

  16. Kunz, E.: Introduction to commutative algebra and algebraic geometry. Birkhäuser, Boston (1985)

    MATH  Google Scholar 

  17. Ljung, L., Glad, T.: On global identifiability for arbitrary model parametrizations. Automatica 30(2), 265–276 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Maxima.sourceforge.net. Maxima, a computer algebra system. version 5.18.1 (2009), Available at http://maxima.sourceforge.net/

  19. Němcová, J.: Structural identifiability of polynomial and rational systems (submitted)

    Google Scholar 

  20. Němcová, J.: Structural and global identifiability of parametrized rational systems. In: Proceedings of 15th IFAC Symposium on System Identification, Saint-Malo, France (2009)

    Google Scholar 

  21. Němcová, J., van Schuppen, J.H.: Realization theory for rational systems: Minimal rational realizations. To appear in Acta Applicandae Mathematicae

    Google Scholar 

  22. Němcová, J., van Schuppen, J.H.: Realization theory for rational systems: The existence of rational realizations. To appear in SIAM Journal on Control and Optimization

    Google Scholar 

  23. Sontag, E.D., Wang, Y., Megretski, A.: Input classes for identification of bilinear systems. IEEE Transactions Autom. Control 54, 195–207 (2009)

    Article  MathSciNet  Google Scholar 

  24. Stoorvogel, A.A., van Schuppen, J.H.: Approximation problems with the divergence criterion for gaussian variables and processes. Systems and Control Letters 35, 207–218 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. CoCoA Team: CoCoA: a system for doing Computations in Commutative Algebra. Available at http://cocoa.dima.unige.it

  26. Singular team: Singular, a computer algebra system. Available at http://www.singular.uni-kl.de/

  27. van den Hof, J.M.: System theory and system identification of compartmental systems. PhD thesis, Rijksuniversiteit Groningen, The Netherlands (1996)

    Google Scholar 

  28. van den Hof, J.M.: Structural identifiability of linear compartmental systems. IEEE Transactions Autom. Control 43(6), 800–818 (1998)

    Article  MATH  Google Scholar 

  29. van Overschee, P., De Moor, B.L.R.: Subspace identification for linear systems. Kluwer Academic Publishers, Dordrecht (1996)

    Book  MATH  Google Scholar 

  30. Wang, Y., Sontag, E.D.: Algebraic differential equations and rational control systems. SIAM J. Control Optim. 30(5), 1126–1149 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  31. Xia, X., Moog, C.H.: Identifiability of nonlinear systems with application to HIV/AIDS models. IEEE Transactions Autom. Control 48(2), 330–336 (2003)

    Article  MathSciNet  Google Scholar 

  32. Zariski, O., Samuel, P.: Commutative algebra I, II. Springer, Heidelberg (1958)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Němcová, J., van Schuppen, J.H. (2010). Rational Systems – Realization and Identification. In: Hu, X., Jonsson, U., Wahlberg, B., Ghosh, B. (eds) Three Decades of Progress in Control Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11278-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11278-2_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11277-5

  • Online ISBN: 978-3-642-11278-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics