Skip to main content

Sparse Blind Source Deconvolution with Application to High Resolution Frequency Analysis

  • Chapter
Three Decades of Progress in Control Sciences

Summary

The title of the paper refers to an extension of the classical blind source separation where the mixing of unknown sources is assumed in the form of convolution with impulse response of unknown linear dynamics. A further key assumption of our approach is that source signals are considered to be sparse with respect to a known dictionary, which suggests a mixed L 1/L 2-optimization as a possible formalism for solving the un-mixing problem. We demonstrate the effectiveness of the framework numerically.

This work was supported in part by grants from NSF, AFOSR, ARO, as well as by NIH (NAC P41 RR-13218) through Brigham and Women’s Hospital. This work is part of the National Alliance for Medical Image Computing (NAMIC), funded by the National Institutes of Health through the NIH Roadmap for Medical Research, Grant U54 EB005149. Information on the National Centers for Biomedical Computing can be obtained from http://nihroadmap.nih.gov/bioinformatics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  2. Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Review (2008)

    Google Scholar 

  3. Candes, E., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory 52, 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Candes, E., Tao, T.: Decoding by linear programming. IEEE Transactions on Information Theory 51, 4203–4215 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Candes, E., Tao, T.: Near optimal signal recovery from random projections: universal encoding strategies. IEEE Transactions on Information Theory 52, 5406–5425 (2006)

    Article  MathSciNet  Google Scholar 

  6. Candes, E., Braun, N., Wakin, M.: Sparse signal and image recovery from compressive samples. In: 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 976–979 (2007)

    Google Scholar 

  7. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing 20(1), 33–61 (1998)

    Article  MathSciNet  Google Scholar 

  8. Donoho, D.L.: For most large underdetermined systems of linear equations the minimal ‘1-norm solution is also the sparsest solution. Communications on Pure and Applied Mathematics 59(6), 797–829 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Donoho, D.L., Elad, M.: Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization. PNAS 100(5), 2197–2202 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Figueiredo, M.A.T., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing 1, 586–597 (2007)

    Article  Google Scholar 

  11. Figueiredo, M., Nowak, R.: An EM algorithm for wavelet-based image restoration. IEEE Trans. Image Processing 12, 906–916 (2003)

    Article  MathSciNet  Google Scholar 

  12. Haber, E., Ascher, U.M., Oldenburg, D.: On optimization techniques for solving nonlinear inverse problems. Inverse Problems 16, 1263–1280 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hyvarinen, A., Hoyer, P., Oja, E.: Sparse code shrinkage: denoising of nongaussian data by maximum likelihood estimation. Neural Computation 11(7), 1739–1768 (1999)

    Article  Google Scholar 

  14. Johansen, T.A.: On Tikhonov regularization, bias and variance in nonlinear system identification. Automatica 33(3), 441–446 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Karmarkar, N.: A new polynomial-time algorithm for linear programming. Combinatorica 4, 373–395 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  16. Koh, K., Kim, S.J., Boyd, S.: An interior-point method for large-scale l1-regularized logistic regression. J. Mach. Learn. Res. 8, 1519–1555 (2007)

    MathSciNet  MATH  Google Scholar 

  17. Li, Y., Cichocki, P., Amari, S.: Sparse component analysis and blind source separation of underdetermined mixtures. Neural Computation 16, 1193–1234 (2004)

    Article  MATH  Google Scholar 

  18. Malioutov, D.M., Cetin, M., Willsky, A.S.: Optimal sparse representations in general overcomplete base. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (2004)

    Google Scholar 

  19. Mallat, S., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing 41(12), 3397–3415 (1993)

    Article  MATH  Google Scholar 

  20. Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York (1999)

    Book  MATH  Google Scholar 

  21. Romberg, J.K.: Sparse signal recovery via ℓ1 minimization. In: Proceedings of the 40th Annual Conference on Information Sciences and Systems, March 2006, pp. 213–215 (2006)

    Google Scholar 

  22. Tsaig, Y., Donoho, D.L.: Breakdown of equivalence between the minimal l1-norm solution and the sparsest solution. Signal Processing 86(3), 533–548 (2006)

    Article  MATH  Google Scholar 

  23. Wang, J., Sacchi, M.D.: High-resolution wave-equation amplitude-variation-withray- parameter imaging with sparseness constraints. Geophysics 72(1), S11–S18 (2007)

    Article  Google Scholar 

  24. Zibulevsky, M., Pearlmutter, B.A.: Blind source separation by sparse decomposition in a signal dictionary. Neural Computation 13, 863–882 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Georgiou, T.T., Tannenbaum, A. (2010). Sparse Blind Source Deconvolution with Application to High Resolution Frequency Analysis. In: Hu, X., Jonsson, U., Wahlberg, B., Ghosh, B. (eds) Three Decades of Progress in Control Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11278-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11278-2_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11277-5

  • Online ISBN: 978-3-642-11278-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics