Skip to main content

On Finding Directed Trees with Many Leaves

  • Conference paper
Parameterized and Exact Computation (IWPEC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5917))

Included in the following conference series:

Abstract

The ROOTED MAXIMUM LEAF OUTBRANCHING problem consists in finding a spanning directed tree rooted at some prescribed vertex of a digraph with the maximum number of leaves. Its parameterized version asks if there exists such a tree with at least k leaves. We use the notion of s − t numbering studied in [19,6,20] to exhibit combinatorial bounds on the existence of spanning directed trees with many leaves. These combinatorial bounds allow us to produce a constant factor approximation algorithm for finding directed trees with many leaves, whereas the best known approximation algorithm has a \(\sqrt{OPT}\)-factor [11]. We also show that ROOTED MAXIMUM LEAF OUTBRANCHING admits an edge-quadratic kernel, improving over the vertex-cubic kernel given by Fernau et al [13].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Fomin, F., Gutin, G., Krivelevich, M., Saurabh, S.: Parameterized algorithms for directed maximum leaf problems. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 352–362. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Alon, N., Fomin, F., Gutin, G., Krivelevich, M., Saurabh, S.: Spanning directed trees with many leaves. SIAM J. Discrete Maths. 23(1), 466–476 (2009)

    Article  MathSciNet  Google Scholar 

  3. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels (Extended abstract). In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 563–574. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Paul, S.: Bonsma and Frederic Dorn. An fpt algorithm for directed spanning k-leaf. abs/0711.4052 (2007)

    Google Scholar 

  5. Chen, J., Liu, Y.: On the parameterized max-leaf problems: digraphs and undirected graphs. Technical report, Department of Computer Science, Texas A& M University (2008)

    Google Scholar 

  6. Cheriyan, J., Reif, J.: Directed s-t numberings, rubber bands, and testing digraph k-vertex connectivity. Combinatorica 14(4), 435–451 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. Daligault, J., Gutin, G., Kim, E.J., Yeo, A.: FPT algorithms and kernels for the Directed k-Leaf problem. To appear in Journal of Computer and System Sciences

    Google Scholar 

  8. Dijkstra, E.: Self-stabilizing systems in spite of distributed control. Commun. ACM 17(11), 643–644 (1974)

    Article  MATH  Google Scholar 

  9. Ding, G., Johnson, T., Seymour, P.: Spanning trees with many leaves. J. Graph Theory 37(4), 189–197 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Downey, R.G., Fellows, M.R.: Parameterized complexity. Springer, Heidelberg (1999)

    Google Scholar 

  11. Drescher, M., Vetta, A.: An approximation algorithm for the maximum leaf spanning arborescence problem. To appear in ACM Transactions on Algorithms

    Google Scholar 

  12. Estivill-Castro, V., Fellows, M., Langston, M., Rosamond, F.: Fixed-parameter tractability is polynomial-time extremal structure theory i: The case of max leaf. In: Proc. of ACiD 2005 (2005)

    Google Scholar 

  13. Fernau, H., Fomin, F.V., Lokshtanov, D., Raible, D., Saurabh, S., Villanger, Y.: Kernel(s) for problems with no kernel: On out-trees with many leaves. In: Albers, S., Marion, J.-Y. (eds.) 26th International Symposium on Theoretical Aspects of Computer Science (STACS 2009), Dagstuhl, Germany. Leibniz International Proceedings in Informatics, vol. 3, pp. 421–432. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2009), http://drops.dagstuhl.de/opus/volltexte/2009/1843

  14. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)

    Google Scholar 

  15. Fomin, F., Grandoni, F., Kratsch, D.: Solving connected dominating set faster than 2n. Algorithmica 52(2), 153–166 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Galbiati, G., Maffioli, F., Morzenti, A.: A short note on the approximability of the maximum leaves spanning tree problem. Inf. Process. Lett. 52(1), 45–49 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  17. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. SIGACT News 38(1), 31–45 (2007)

    Article  Google Scholar 

  18. Kneis, J., Langer, A., Rossmanith, P.: A new algorithm for finding trees with many leaves. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 270–281. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Lempel, A., Even, S., Cederbaum, I.: An algorithm for planarity testing of graphs. In: Rosenstiehl, P. (ed.) Theory of Graphs: Internat. Sympos.: Rome, pp. 215–232 (1966)

    Google Scholar 

  20. Linial, N., Lovasz, L., Wigderson, A.: Rubber bands, convex embeddings and graph connectivity. Combinatorica 8, 91–102 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  21. Niedermeier, R.: Invitation to fixed parameter algorithms. Oxford Lectures Series in Mathematics and its Applications, vol. 31. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  22. Solis-Oba, R.: 2-approximation algorithm for finding a spanning tree with maximum number of leaves. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 441–452. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  23. Storer, J.A.: Constructing full spanning trees for cubic graphs. Inform Process Lett. 13, 8–11 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  24. Wu, J., Li, H.: On calculating connected dominating set for efficient routing in ad hoc wireless networks. In: DIALM 1999: Proceedings of the 3rd international workshop on Discrete algorithms and methods for mobile computing and communications, pp. 7–14. ACM Press, New York (1999)

    Chapter  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Daligault, J., Thomassé, S. (2009). On Finding Directed Trees with Many Leaves. In: Chen, J., Fomin, F.V. (eds) Parameterized and Exact Computation. IWPEC 2009. Lecture Notes in Computer Science, vol 5917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11269-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11269-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11268-3

  • Online ISBN: 978-3-642-11269-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics