Skip to main content

Polynomial Kernels and Faster Algorithms for the Dominating Set Problem on Graphs with an Excluded Minor

  • Conference paper
Parameterized and Exact Computation (IWPEC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5917))

Included in the following conference series:

Abstract

The domination number of a graph G = (V,E) is the minimum size of a dominating set U ⊆ V, which satisfies that every vertex in V ∖ U is adjacent to at least one vertex in U. The notion of a problem kernel refers to a polynomial time algorithm that achieves some provable reduction of the input size. Given a graph G whose domination number is k, the objective is to design a polynomial time algorithm that produces a graph G′ whose size depends only on k, and also has domination number equal to k. Note that the graph G′ is constructed without knowing the value of k. All the constructions in this paper are of monotone kernels, that is, the kernel G′ is a subgraph of the input graph G. Problem kernels can be used to obtain efficient approximation and exact algorithms for the domination number, and are also useful in practical settings.

In this paper, we present the first nontrivial result for the general case of graphs with an excluded minor, as follows. For every fixed h, given a graph G with n vertices that does not contain K h as a topological minor, our O(n 3.5 + k O(1)) time algorithm constructs a subgraph G′ of G, such that if the domination number of G is k, then the domination number of G′ is also k and G′ has at most k c vertices, where c is a constant that depends only on h. This result is improved for graphs that do not contain K 3,h as a topological minor, using a simpler algorithm that constructs a subgraph with at most ck vertices, where c is a constant that depends only on h.

Our results imply that there is a problem kernel of polynomial size for graphs with an excluded minor and a linear kernel for graphs that are K 3,h -minor-free. The only previous kernel results known for the dominating set problem are the existence of a linear kernel for the planar case as well as for graphs of bounded genus. Using the polynomial kernel construction, we give an \(O(n^{3.5} + 2^{O(\sqrt{k})})\) time algorithm for finding a dominating set of size at most k in an H-minor-free graph with n vertices. This improves the running time of the previously best known algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed parameter algorithms for DOMINATING SET and related problems on planar graphs. Algorithmica 33(4), 461–493 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alber, J., Dorn, B., Niedermeier, R.: A general data reduction scheme for domination in graphs. In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006. LNCS, vol. 3831, pp. 137–147. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Alber, J., Fan, H., Fellows, M.R., Fernau, H., Niedermeier, R., Rosamond, F.A., Stege, U.: A refined search tree technique for dominating set on planar graphs. J. Comput. Syst. Sci. 71(4), 385–405 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Alber, J., Fellows, M.R., Niedermeier, R.: Polynomial-time data reduction for dominating set. Journal of the ACM 51(3), 363–384 (2004)

    Article  MathSciNet  Google Scholar 

  5. Alon, N., Gutner, S.: Kernels for the dominating set problem on graphs with an excluded minor. Electronic Colloquium on Computational Complexity (ECCC) 15(066) (2008)

    Google Scholar 

  6. Alon, N., Gutner, S.: Linear time algorithms for finding a dominating set of fixed size in degenerated graphs. Algorithmica 54(4), 544–556 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bollobás, B., Thomason, A.: Proof of a conjecture of Mader, Erdös and Hajnal on topological complete subgraphs. Eur. J. Comb. 19(8), 883–887 (1998)

    Article  MATH  Google Scholar 

  8. Bondy, J.A., Murty, U.S.R.: Graph theory with applications. American Elsevier Publishing Co., Inc., New York (1976)

    Google Scholar 

  9. Chen, J., Fernau, H., Kanj, I.A., Xia, G.: Parametric duality and kernelization: lower bounds and upper bounds on kernel size. SIAM J. Comput. 37(4), 1077–1106 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Fixed-parameter algorithms for (k, r)-center in planar graphs and map graphs. ACM Transactions on Algorithms 1(1), 33–47 (2005)

    Article  MathSciNet  Google Scholar 

  11. Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs. Journal of the ACM 52(6), 866–893 (2005)

    Article  MathSciNet  Google Scholar 

  12. Diestel, R.: Graph theory, 3rd edn. Graduate Texts in Mathematics, vol. 173. Springer, Berlin (2005)

    MATH  Google Scholar 

  13. Downey, R.G., Fellows, M.R.: Parameterized complexity. Monographs in Computer Science. Springer, New York (1999)

    Google Scholar 

  14. Ellis, J.A., Fan, H., Fellows, M.R.: The dominating set problem is fixed parameter tractable for graphs of bounded genus. J. Algorithms 52(2), 152–168 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Flum, J., Grohe, M.: Parameterized complexity theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2006)

    Google Scholar 

  16. Fomin, F.V., Thilikos, D.M.: Fast parameterized algorithms for graphs on surfaces: Linear kernel and exponential speed-up. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 581–592. Springer, Heidelberg (2004)

    Google Scholar 

  17. Fomin, F.V., Thilikos, D.M.: Dominating sets in planar graphs: Branch-width and exponential speed-up. SIAM J. Comput. 36(2), 281–309 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Grohe, M.: Local tree-width, excluded minors, and approximation algorithms. Combinatorica 23(4), 613–632 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Itai, A., Perl, Y., Shiloach, Y.: The complexity of finding maximum disjoint paths with length constraints. Networks 12(3), 277–286 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kanj, I.A., Perkovic, L.: Improved parameterized algorithms for planar dominating set. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 399–410. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  21. Komlós, J., Szemerédi, E.: Topological cliques in graphs II. Combinatorics. Probability & Computing 5, 79–90 (1996)

    MATH  Google Scholar 

  22. Kostochka, A.V.: Lower bound of the Hadwiger number of graphs by their average degree. Combinatorica 4(4), 307–316 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  23. Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  24. Philip, G., Raman, V., Sikdar, S.: Solving dominating set in larger classes of graphs: FPT algorithms and polynomial kernels. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 694–705. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  25. Thomason, A.: An extremal function for contractions of graphs. Math. Proc. Cambridge Philos. Soc. 95(2), 261–265 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  26. Thomason, A.: The extremal function for complete minors. J. Comb. Theory, Ser. B 81(2), 318–338 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gutner, S. (2009). Polynomial Kernels and Faster Algorithms for the Dominating Set Problem on Graphs with an Excluded Minor. In: Chen, J., Fomin, F.V. (eds) Parameterized and Exact Computation. IWPEC 2009. Lecture Notes in Computer Science, vol 5917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11269-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11269-0_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11268-3

  • Online ISBN: 978-3-642-11269-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics