Skip to main content

Taming the Complexity of Inductive Logic Programming

  • Conference paper
  • 887 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5901))

Abstract

Inductive logic programming (ILP) [12] is concerned with the induction of theories from specific examples and background knowledge, using first-order logic representations for all the three ingredients. In its early days some twenty years ago, ILP was perceived as a means for automatic synthesis of logic programs, i.e. Horn clausal theories. Current research views ILP algorithms mainly in the context of machine learning [14] and data mining [1]. ILP has enriched both of the two fieds significantly by providing them with formalisms and algorithms for learning (or ‘mining’) complex pieces of knowledge from non-trivially structured data such as relational databases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Džeroski, S., Lavrač, N. (eds.): Relational Data Mining. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  2. Gomes, C., Selman, B., Crato, N., Kautz, H.: Heavy-Tailed Phenomena in Satisfiability and Constraint Satisfaction Problems. Journal of Automated Reasoning 24, 67–100 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Gottlob, G.: Subsumption and Implication. Information Processing Letters 24, 109–111 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  4. Gottlob, G., Leone, N., Scarcello, F.: On the Complexity of Some Inductive Logic Programming Problems. New Generation Computing 17, 53–75 (1999)

    Article  Google Scholar 

  5. Kautz, H., Horvitz, E., Ruan, Y., Gomes, C., Selman, B.: Dynamic Restart Policies. In: AAAI 2002, Association for the Advancement of Artificial Intelligence Symposium (2002)

    Google Scholar 

  6. Kirkpatrick, S., Selman, B.: Critical Behavior in the Satisfiability of Random Boolean Expressions. Science 264, 1297–1301 (1994)

    Article  MathSciNet  Google Scholar 

  7. Kuželka, O., Železný, F.: Block-Wise Construction of Acyclic Relational Features with Monotone Irreducibility and Relevancy Properties. In: ICML 2009, the 26th Int. Conf. on Machine Learning (2009)

    Google Scholar 

  8. Kuželka, O., Železný, F.: Fast Estimation of First-Order Clause Coverage through Randomization and Maximum Likelihood. In: ICML 2008, the 25th Int. Conf. on Machine Learning (2008)

    Google Scholar 

  9. Kuželka, O., Železný, F.: A Restarted Strategy for Efficient Subsumption Testing. Fundamenta Informaticae 89, 95–109 (2008)

    MATH  Google Scholar 

  10. Maloberti, J., Sebag, M.: Fast Theta-Subsumption with Constraint Satisfaction Algorithms. Machine Learning 55(2), 137–174 (2004)

    Article  MATH  Google Scholar 

  11. Marcinkowski, J., Pacholski, L.: Undecidability of the Horn-Clause Implication Problem. In: FOCS 2002, the 33rd Ann. Sympos. on Foundations of Computer Science (2002)

    Google Scholar 

  12. Nienhuys-Cheng, S.H., de Wolf, R.: Foundations of Inductive Logic Programming. Springer, Heidelberg (1997)

    Google Scholar 

  13. Raedt, L.D.: Logical Settings for Concept Learning. Artificial Intelligence 95, 187–201 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Raedt, L.D.: Logical and Relational Learning. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  15. Raedt, L.D., Frasconi, P., Kersting, K., Muggleton, S. (eds.): Probabilistic Inductive Logic Programming. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  16. Železný, F., Lavrač, N.: Propositionalization-Based Relational Subgroup Discovery with RSD. Machine Learning 62, 33–63 (2006)

    Article  Google Scholar 

  17. Železný, F., Srinivasan, A., Page, D.: Lattice Search Runtime Distributions May Be Heavy Tailed. In: Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 333–345. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  18. Železný, F., Srinivasan, A., Page, D.: Randomized Restarted Search in ILP. Machine Learning 64, 183–208 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Železný, F., Kuželka, O. (2010). Taming the Complexity of Inductive Logic Programming. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds) SOFSEM 2010: Theory and Practice of Computer Science. SOFSEM 2010. Lecture Notes in Computer Science, vol 5901. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11266-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11266-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11265-2

  • Online ISBN: 978-3-642-11266-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics