Skip to main content

Abstract

The influence of scattered radiation on image quality has been discussed in the previous chapters over and over again, because the knowledge of its effect on the visibility of image details is decisive for diagnosis. In the following it is explained that it is of great importance for image quality and dose which method of scatter reduction technique is selected. In comparing different anti-scatter grid types, e.g., one must take into consideration not only the geometrical characteristics of the grid design (e.g. strip density N, grid ratio r; see Sect. 7.4), but also the materials used for their cover and interspaces (aluminium, paper, carbon fibre). Various publications (Boldingh 1961; Chan and Doi 1982; Aichinger et al. 1992, 1995; Sandborg et al.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aichinger H, Säbel M (1999) Techniken der Streustrahlenreduktion bei der Röntgendiagnostik. Röntgenpraxis 52:251–264

    PubMed  CAS  Google Scholar 

  • Aichinger H, Staudt F, Kuhn H (1992) Multiline grids for imaging in diagnostic radiology – a physical and clinical assessment. Electromedica 60:74–81

    Google Scholar 

  • Aichinger H, Seyferth W, Staudt F (1995) The specific effectiveness of high-strip-density grids in diagnostic radiology (abstract). Eur Radiol 5(Suppl):70

    Google Scholar 

  • Barnes GT (1991) Contrast and scatter in x-ray imaging. Radiographics 11:307–323

    PubMed  CAS  Google Scholar 

  • Baydush AH, Floyd CE Jr (2000) Improved image quality in digital mammography with image processing. Med Phys 27(7):1503–1508

    Article  PubMed  CAS  Google Scholar 

  • Baydush AH, Ghem WC, Floyd CE Jr (2000) Anthropomorphic versus geometric chest phantoms: a comparison of scatter properties. Med Phys 27(5):894–897

    Article  PubMed  CAS  Google Scholar 

  • Boldingh WH (1961) Quality and choice of Potter Bucky grids: parts IV, V. Acta Radiol 55:225–235

    Article  Google Scholar 

  • CEC (Commission of the European Communities) (1996) European guidelines on quality criteria for diagnostic radiographic images in paediatrics. EUR 16261EN (ISBN 92–827–7843–6) Brussels

    Google Scholar 

  • Chan H-P, Doi K (1982) Investigation of the performance of antiscatter grids: Monte Carlo simulation studies. Phys Med Biol 27:785–803

    Article  PubMed  CAS  Google Scholar 

  • Chan HP, Frank PH, Doi K, Iida N, Higashida Y (1985) Ultra-high-strip-density radiographic grids: a new antiscatter technique for mammography. Radiology 154:807–815

    PubMed  CAS  Google Scholar 

  • Chan H-P, Lam KL, Wu Y (1990) Studies of performance of antiscatter grids in digital radiography: effect on signal-to-noise ratio. Med Phys 17(4):655–664

    Article  PubMed  CAS  Google Scholar 

  • Dershaw DD, Masterson ME, Malik S, Cruz NM (1985) Mammography using an ultrahigh-strip-density, stationary, focused grid. Radiology 156:541–544

    PubMed  CAS  Google Scholar 

  • Doi K, Frank PH, Chan H-P, Vyborny CJ, Makino S, Iida N, Carlin M (1983) Physical and clinical evaluation of new high-strip-density radiographic grids. Radiology 147:575–582

    PubMed  CAS  Google Scholar 

  • Friedrich M (1975) Der Einfluss der Streustrahlung auf die Abbildungsqualität bei der Mammographie. Fortschr Rontgenstr 123:556–566

    Article  CAS  Google Scholar 

  • Friedrich M (1984) Schlitzblendentechnik für die Mammographie. Fortschr Rontgenstr 141:574–582

    Article  CAS  Google Scholar 

  • Friedrich M (1986) Ultra-Hoch-Linien-Dichte-Raster für die Mammographie: Eine Alternative zur Rastermammographie? Fortschr Rontgenstr 144:566–571

    Article  CAS  Google Scholar 

  • IEC (International Electrotechnical Commission) (1978) Characteristics of antiscatter grids used in x-ray equipment. Publication 60627. IEC, Geneva

    Google Scholar 

  • IEC (International Electrotechnical Commission) (2001) Diagnostic x-ray imaging equipment – characteristics of general purpose and mammographic antiscatter grids. Publication 60627. IEC, Geneva

    Google Scholar 

  • IPSM (Institute of Physical Sciences in Medicine) (1994) The commissioning and routine testing of mammographic x-ray systems, 2nd edn. Topic Group Report 59. IPSM, York

    Google Scholar 

  • Jaffray DA, Siewerdsen JH (2000) Cone-beam computed tomography with a flat-panel imager: initial performance characterization. Med Phys 27(6):1311–1323

    Article  PubMed  CAS  Google Scholar 

  • Jing Z, Huda W, Walker JK (1998) Scattered radiation in scanning slot mammography. Med Phys 25(7):1111–1117

    Article  PubMed  CAS  Google Scholar 

  • Krol A, Bassano DA, Chamberlain CC, Prasad SC (1996) Scatter reduction in mammography with air gap. Med Phys 23(7): 1263–1270

    Article  PubMed  CAS  Google Scholar 

  • Neitzel U (1992) Grids or air gaps for scatter reduction in digital radiography: a model calculation. Med Phys 19(2):475–481

    Article  PubMed  CAS  Google Scholar 

  • Niklason LT, Sorenson JA, Nelson JA (1981) Scattered radiation in chest radiography. Med Phys 8(5):677–681

    Article  PubMed  CAS  Google Scholar 

  • Rezentes PS, de Almeida A, Barnes GT (1999) Mammography grid performance. Radiology 210:227–232

    PubMed  CAS  Google Scholar 

  • Säbel M, Aichinger H (1996) Recent developments in breast imaging. Phys Med Biol 41:315–368

    Article  PubMed  Google Scholar 

  • Sandborg M, Dance DR, Alm Carlsson G, Persliden J (1993) Selection of antiscatter grids for different imaging tasks: the advantage of low atomic number cover and interspace materials. Br J Radiol 66:1151–1163

    Article  PubMed  CAS  Google Scholar 

  • Siewerdsen JH, Moseley DJ, Bakhtiar B, Richard S, Jaffray DA (2004) The influence of antiscatter grids on soft-tissue detectability in cone-beam computed tomography with flat-panel detectors. Med Phys 31(12):3506–3520

    Article  PubMed  CAS  Google Scholar 

  • Sorenson JA, Floch J (1985) Scatter rejection by air gaps: an empirical model. Med Phys 12(3):308–316

    Article  PubMed  CAS  Google Scholar 

  • Veldkamp WJH, Thijssen MAO, Karssemeijer N (2003) The value of scatter removal by a grid in full field digital mammography. Med Phys 30(7):1712–1718

    Article  PubMed  Google Scholar 

  • Wagner RF (1977) Noise equivalent parameters in general medical radiography: the present and future pictures. Photogr Sci Eng 21:252–262

    CAS  Google Scholar 

  • Wamser G, Maier W, Aichinger H, Bohndorf K (1997) Clinical evaluation of a new stationary grid in comparison with a conventional grid: influence on image quality and patient dose (abstract). Radiology 205:617

    Google Scholar 

  • Wamser G, Aichinger H, Maier W, Bohndorf K (2001) Clinical evaluation of a new stationary high-strip density antiscatter grid in comparison with a conventional moving grid: influence on image quality and patient radiation dose. Eur Radiol 11:1710–1719

    Article  PubMed  CAS  Google Scholar 

  • Wiegert J, Bertram M, Schäfer D, Conrads N, Timmer J, Aach T, Rose G (2004) Performance of standard fluoroscopy anti-scatter grids in flat detector based cone beam CT. Proc SPIE 5368:67–78

    Article  Google Scholar 

  • Yaffe MJ (1992) Digital mammography. In: Haus AG, Yaffe MJ (eds) Syllabus: a categorical course in physics: technical aspects of breast imaging. RSNA, Oak Brook, pp 245–256

    Google Scholar 

  • Yoon J-W, Park Y-G, Park C-J, Do-II K, Lee J-H, Chung N-K, Choe B-Y, Suh T-S, Lee H-K (2007) Reduction of a grid moiré pattern by integrating a carbon-interspaced high precision x-ray grid with a digital radiographic detector. Med Phys 34(11):4092–4097

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst Aichinger .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-VerlagBerlin Heidelberg

About this chapter

Cite this chapter

Aichinger, H., Dierker, J., Joite-Barfuß, S., Säbel, M. (2012). Scattered Radiation. In: Radiation Exposure and Image Quality in X-Ray Diagnostic Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11241-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11241-6_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11240-9

  • Online ISBN: 978-3-642-11241-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics