Skip to main content

Abstract

In X-ray diagnostic radiology there are essentially two reasons for determining radiation doses to patients. First, knowledge of the absorbed doses to tissues and organs in the patient is needed to estimate the associated radiation risk. Second, this knowledge plays a significant role in the optimisation of image quality versus radiation exposure and therefore in the process of setting and checking standards of good practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AAPM (American Association of Physicists in Medicine) (2008) The measurement, reporting, and management of radiation dose in CT. Report No. 96

    Google Scholar 

  • Aichinger H, Joite-Barfuss S, Marhoff P (1990) Automatic exposure control system in mammography. Electromedica 58:61–66

    Google Scholar 

  • Bauer B, Corbett RH, Moores BM, Schibilla H, Teunen D (1998) Reference doses and quality in medical imaging. Radiat Prot Dosim 80:1–3

    Article  Google Scholar 

  • Beckett JR, Klotre CJ (2000) Dosimetric implications of age related glandular changes in screening mammography. Phys Med Biol 45:801–813

    Article  PubMed  CAS  Google Scholar 

  • BMU (Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit) (2009) Umweltradioaktiuitðt und Strahlenbelastung im Jahr 2008: Unterrichtung durch die Bundesregierung http://nbnresolving. de/urn:nbn:de:0221-201003311019

  • Boone JM (1999) Glandular breast dose for monoenergetic and high energy X-ray beams: Monte-Carlo assessment. Radiology 213:23–37

    PubMed  CAS  Google Scholar 

  • CEC (Commission of the European Communities) (1996) European protocol on dosimetry in mammography. Report EUR 16263. CEC, Luxembourg

    Google Scholar 

  • CEC (1997) Quality criteria for computed tomography. Working document EUR 16262. CEC, Brussels

    Google Scholar 

  • Dance DR (1990) Monte Carlo calculation of conversion factors for the estimation of mean glandular breast dose. Phys Med Biol 35:1211–1219

    Article  PubMed  CAS  Google Scholar 

  • Dance DR, Skinner CL, Young KC (2000) Additional factors for the estimation of mean glandular breast dose using the UK mammography dosimetry protocol. Phys Med Biol 45:3225–3240

    Article  PubMed  CAS  Google Scholar 

  • Department of Health and Human Services, Food and Drug Administration 21 CFR (1984) Part 1020: diagnostic X-ray systems and their major components; amendments to performance standards; final rule. Federal Register 49(171):34698–714

    Google Scholar 

  • DIN (Deutsches Institut für Normung) (1999) Grundlagen der Meßtechnik – Teil 4: Auswertung von Messungen; Meßunsicherheit, DIN 1319-4, Beuth, Berlin

    Google Scholar 

  • DIN (Deutsches Institut für Normung) (2003) Klinische Dosimetrie:Verfahren zur Ermittlung der Patientendosis in der Röntgendiagnostik. DIN 6809, Part 7.Beuth, Berlin

    Google Scholar 

  • DIN (Deutsches Institut für Normung) (2005), Medizinische Röntgenanlagen bis 300 kV – Regeln für die Prüfung des Strahlenschutzes nach Errichtung, Instandsetzung und wesentlicher Änderung. DIN 6815, Berlin

    Google Scholar 

  • DIN (Deutsches Institut für Normung) (2009) Klinische Dosimetrie: Röntgendiagnostik. DIN 6809, Part 3 (Draft). Beuth, Berlin

    Google Scholar 

  • Drexler G, Panzer W, Stieve F-E, Widenmann L, Zankl M (1993) Die Bestimmung von Organdosen in der Röntgendiagnostik. Hoffmann, Berlin

    Google Scholar 

  • European Commission (2006) European guidelines for quality assurance in breast cancer screening and diagnosis. 4th edition, Luxembourg

    Google Scholar 

  • Geise RA, Palchevsky A (1996) Composition of mammographic phantom materials. Radiology 198:347–350

    PubMed  CAS  Google Scholar 

  • Gfirtner H, Stieve F-E, Wild J (1997) A new Diamentor for measuring kerma-area product and air-kerma simultaneously. Med Phys 24(12):1954–1959

    Article  PubMed  CAS  Google Scholar 

  • Gosch D, Gosch K, Kahn T (2007) Conversion coefficients for estimation of effective dose to patients from dose area product during fluoroscopy X-ray examinations. Fortschr Röntgenstr 179:1035–1042

    Article  CAS  Google Scholar 

  • Harrison RM (1981) Central-axis depth-dose data for diagnostic radiology. Phys Med Biol 26:657–670

    Article  PubMed  CAS  Google Scholar 

  • Harrison RM (1983) Tissue-air ratios and scatter-air ratios for diagnostic radiology (1–4 mm Al HVL). Phys Med Biol 28:1–18

    Article  PubMed  CAS  Google Scholar 

  • Hart D, Jones DJ, Wall BF (1994) Estimation of effective dose in diagnostic radiology from entrance surface dose and dose-area product measurements. NRPB-R262. National Radiological Protection Board

    Google Scholar 

  • Hart D, Jones DJ, Wall BF (1998) Normalised organ doses for medical X-ray examinations calculated using Monte Carlo techniques. NRPB-SR262 (Software Report). National Radiological Protection Board

    Google Scholar 

  • Heggie JCP (1996) Survey of doses in screening mammography Australas. Phys Eng Sci Med 19:207–216

    CAS  Google Scholar 

  • ICRP (International Commission on Radiological Protection) (1987) Statement from the 1987 Como meeting of the ICRP. ICRP Publication 52. Ann ICRP 17(4)

    Google Scholar 

  • IEC (International Electrotechnical Commission (1978) Characteristics of Anti-Scatter Grids used in X-ray Equipment. Publication 60627 (Geneva: IEC)

    Google Scholar 

  • IEC (International Electrotechnical Commission (1999) Evaluation and routine testing in medical imaging departments – Part 3–1: acceptance tests – imaging performance of X-ray equipment for radiographic and radioscopic systems. Publication 61223–3–1 (Geneva: IEC)

    Google Scholar 

  • IEC (International Electrotechnical Commission) (2004) Evaluation and routine testing in medical imaging departments – 61223-3-5 Part 3–5: acceptance tests – Imaging performance of computed tomography X-ray equipment. (Geneva: IEC)

    Google Scholar 

  • IEC (International Electrotechnical Commission) (2008) Medical electrical equipment – Exposure index of digital X-ray imaging systems – Part 1: definition and requirements for general radiography. Publication 62494–1. IEC, Geneva

    Google Scholar 

  • Kalender WA, Schmidt B, Zankl M, Schmidt M (1999) A PC program for estimating organ dose and effective dose values in computed tomography. Eur Radiol 9:555–562

    Article  PubMed  CAS  Google Scholar 

  • Klein R, Aichinger H, Dierker J, Jansen JTM, Joite-Barfuss S, Säbel M, Schulz-Wendtland R, Zoetelief J (1997) Determination of average glandular dose with modern mammography units for two large groups of patients. Phys Med Biol 42:651–671

    Article  PubMed  CAS  Google Scholar 

  • Kramer R, Khoury HJ, Vieira JW (2008) CALDose_X – a software tool for the assessment of organ and tissue absorbed doses, effective dose and cancer risks in diagnostic radiology. Phys Med Biol 53:6437–6459

    Article  PubMed  CAS  Google Scholar 

  • Le Heron JC (1992) Estimation of effective dose to the patient during medical X-ray examinations from measurements of the dose-area product. Phys Med Biol 37:2117–2126

    Article  PubMed  Google Scholar 

  • McCollough CH, Schueler BA (2000) Educational treatise: calculation of effective dose. Med Phys 27(5):828–837

    Article  PubMed  CAS  Google Scholar 

  • Nagel HD (2002) Strahlenexposition in der Computertomographie. CTB Publications, Hamburg

    Google Scholar 

  • NCS (Netherlands Commission on Radiation Dosimetry) (1993) Dosimetric aspects of mammography. Report 6. NCS, Delft

    Google Scholar 

  • Petoussi-Henss N, Zankl M, Drexler G, Panzer W, Regulla D (1998) Calculation of backscatter factors for diagnostic radiology using Monte Carlo methods. Phys Med Biol 43:2237–2250

    Article  Google Scholar 

  • Rosenstein M, Andersen LW, Warner GG (1985) Handbook of glandular tissue doses in mammography. US Department of Health and Human Services, Rockville, FDA 85–8239

    Google Scholar 

  • Säbel M, Bednar W, Weishaar J (1980) Untersuchungen zur Strahlenexposition der Leibesfrucht bei Röntgenuntersuchungen während der Schwangerschaft. 1. Mitteilung: Gewebe-Luft-Verhältnisse für Röntgenstrahlen mit Röhrenspannungen zwischen 60 kV und 120 kV. Strahlentherapie 156:502–508

    PubMed  Google Scholar 

  • Seidenbusch MC, Regulla D, Schneider K (2008) Radiation exposure of children in pediatric radiology. Part 3: conversion coefficients for reconstruction of organ doses achieved during chest X-ray examinations. Fortschr Röntgenstr 180:1061–1081

    Article  CAS  Google Scholar 

  • Seidenbusch MC, Regulla D, Schneider K (2009) Radiation exposure of children in pediatric radiology. Part 6: Conversion factors for reconstruction of organ dose in abdominal radiography. Fortschr Röntgenstr 181:945–961

    Article  CAS  Google Scholar 

  • Stamm G, Nagel HD (2002) CT-Expo – a novel program for dose evaluation in CT. Fortschr Röntgenstr 174:1570–1576

    Article  CAS  Google Scholar 

  • Stanton L, Villafana T, Day JL, Lightfoot DA (1984) Dosage evaluation in mammography. Radiology 150:577–584

    PubMed  CAS  Google Scholar 

  • Stern SH, Rosenstein M, Renauld L, Zankl M (1995) Handbook of selected tissue doses for fluoroscopic and cineangiographic examination of coronary arteries. HHS Publication, Rockville, FDA 95–8289

    Google Scholar 

  • Wu X, Barnes GT, Tucker DM (1991) Spectral dependence of glandular tissue dose in screen-film mammography. Radiology 179:143–148

    PubMed  CAS  Google Scholar 

  • Wu X, Gingold EL, Barnes GT, Tucker DM (1994) Normalized average glandular dose in molybdenum target – rhodium filter and rhodium target – rhodium filter mammography. Radiology 193:83–89

    PubMed  CAS  Google Scholar 

  • Young KC, Ramsdale ML, Bignell F (1998) Review of dosimetric methods for mammo-graphy. Radiat Prot Dosim 80:183–186

    Article  Google Scholar 

  • Zankl M, Panzer W, Drexler G (1991) The calculation of dose from external photon exposures using reference human phantoms and Monte Carlo methods. Part VI. Organ doses from computed tomographic examinations. GSF-Bericht 30/91

    Google Scholar 

  • Zoetelief J, Fitzgerald M, Leitz W, Säbel M (1998) Dosimetric methods for and influence of exposure parameters on the establishment of reference doses in mammography. Radiat Prot Dosim 80:175–180

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst Aichinger .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-VerlagBerlin Heidelberg

About this chapter

Cite this chapter

Aichinger, H., Dierker, J., Joite-Barfuß, S., Säbel, M. (2012). Evaluation of Dose to the Patient. In: Radiation Exposure and Image Quality in X-Ray Diagnostic Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11241-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11241-6_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11240-9

  • Online ISBN: 978-3-642-11241-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics