Skip to main content

Topological Map Extraction with Semantic Information

  • Chapter
Book cover Semantic Labeling of Places with Mobile Robots

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 61))

  • 696 Accesses

Introduction

In the previous chapter we saw how a robot can classify its pose in an indoor environment into a semantic class. The different semantic classes represented typical divisions of the environment such as corridors, rooms or doorways. This chapter will show how a robot can extract a topological map from the environment using the previous semantic labeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beeson, P., Jong, N.K., Kuipers, B.: Towards autonomous topological place detection using the extended voronoi graph. In: Proceedings of the IEEE International Conference on Robotics and Automation (2005)

    Google Scholar 

  2. CARMEN. Carnegie Mellon Robot Navigation Toolkit, http://carmen.sourceforge.net/

  3. Choset, H.: Topological simultaneous localization and mapping (SLAM): Toward exact localization without explicit localization. IEEE Transactions on Robotics and Automation (2001)

    Google Scholar 

  4. Fabrizi, E., Saffiotti, A.: Extracting topology-based maps from gridmaps. In: Proceedings of the IEEE International Conference on Robotics and Automation, San Francisco, CA, pp. 2972–2978 (2000)

    Google Scholar 

  5. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boosting. Annals of Statistics 28(2), 337–407 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Friedman, S., Pasula, H., Fox, D.: Voronoi random fields: Extracting the topological structure of indoor environments via place labeling. In: Proceedings of the International Joint Conference on Artificial Intelligence, Hyderabad, India (2007)

    Google Scholar 

  7. Gonzalez, R.C., Wintz, P.A.: Digital Image Processing. Addison-Wesley Publishing Inc., Reading (1987)

    Google Scholar 

  8. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. Journal of Machine Learning Research 3, 1157–1182 (2003)

    Article  MATH  Google Scholar 

  9. Haralick, R.M., Shapiro, L.G.: Computer and Robot Vision. Addison-Wesley Publishing Inc., Reading (1992)

    Google Scholar 

  10. Howard, A., Roy, N.: The robotics data set repository, Radish (2003), http://radish.sourceforge.net/

  11. Kortenkamp, D., Weymouth, T.: Topological mapping for mobile robots using a combination of sonar and vision sensing. In: Proceedings of the National Conference on Artificial Intelligence, pp. 979–984 (1994)

    Google Scholar 

  12. Kuipers, B., Byun, Y.T.: A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations. Journal of Robotics and Autonomous Systems 8, 47–63 (1991)

    Article  Google Scholar 

  13. Loncaric, S.: A survey of shape analysis techniques. Pattern Recognition 31(8), 983–1001 (1998)

    Article  Google Scholar 

  14. Montemerlo, M., Roy, N., Thrun, S.: Perspectives on standardization in mobile robot programming. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2003)

    Google Scholar 

  15. O’Rourke, J.: Computational Geometry in C, 2nd edn. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  16. Rosenfeld, A., Hummel, R.A., Zucker, S.W.: Scene labeling by relaxation operations. IEEE Transactions on Systems Man and Cybernetics 6(6), 420–433 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  17. Rosenfeld, A., Pfaltz, J.L.: Sequential operations in digital picture processing. Journal of the Association for Computing Machinery 13(4), 471–494 (1966)

    MATH  Google Scholar 

  18. Russ, J.C.: The Image Processing Handbook. CRC Press, Boca Raton (1992)

    Google Scholar 

  19. Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated predictions. Machine Learning 37(3), 297–336 (1999)

    Article  MATH  Google Scholar 

  20. Shatkey, H., Kaelbling, L.P.: Learning topological maps with weak local odometric information. In: Proceedings of the International Conference on Artificial Intelligence (1997)

    Google Scholar 

  21. Tapus, A., Siegwart, R.: Incremental robot mapping with fingerprints of places. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, August 2005, pp. 2429–2434 (2005)

    Google Scholar 

  22. Taskar, B.: Learning associative markov networks. In: Proceedings of the International Conference on Machine Learning (2004)

    Google Scholar 

  23. Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 3rd edn. Academic Press, London (2006)

    MATH  Google Scholar 

  24. Thrun, S.: Learning metric-topological maps for indoor mobile robot navigation. Artificial Intelligence 99(1), 21–71 (1998)

    Article  MATH  Google Scholar 

  25. Triebel, R., Schmidt, R., Mozos, O.M., Burgard, W.: Instace-based AMN classification for improved object recognition in 2D and 3D laser range data. In: Proceedings of the International Joint Conference on Artificial Intelligence, Hyderabad, India, pp. 2225–2230 (2007)

    Google Scholar 

  26. Yamamoto, H.: A method of deriving compatibility coefficients for relaxation operators. Computer Graphics and Image Processing 10, 256–271 (1979)

    Article  Google Scholar 

  27. Zivkovic, Z., Bakker, B., Kröse, B.: Hierarchical map building using visual landmarks and geometric constraints. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2005)

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mozos, Ó.M. (2010). Topological Map Extraction with Semantic Information. In: Semantic Labeling of Places with Mobile Robots. Springer Tracts in Advanced Robotics, vol 61. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11210-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11210-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11209-6

  • Online ISBN: 978-3-642-11210-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics