Skip to main content

The Genetics and Molecular Biology of Oesophageal Development

  • Chapter
  • First Online:
Esophageal and Gastric Disorders in Infancy and Childhood

Abstract

The aetiology of esophageal atresia with or without tracheoesophageal fistula (EA/TEF) has been explored using both epidemiological and molecular methodologies [1, 2]. Three large population-based epidemiological studies have arrived at similar estimates of the incidence, familial aggregation and recurrence risk for this malformation [3–5]. The overall conclusion from these studies is that genetic factors are not strongly implicated in the etiopathogenesis of the EA/TEF malformation complex.

These indirect measures of the magnitude of the effect of potential genetic and environmental contributors to the causes of EA/TEF have been complemented by intensive study of the molecular underpinnings of Mendelian syndromes in which EA/TEF is a frequent manifestation of their phenotype. Whilst the evidence suggests that the contribution of genetic factors in causing EA/TEF at the population level is not large, the study of rare syndromes that feature the malformation has identified several genes that have been directly implicated in the biology of canalising and partitioning of the primitive foregut. It is plausible that the disruption of pathways defined by these genetic factors may lead to sporadic, non-syndromic instances of EA/TEF, although the mode by which these perturbations take place may not be inherently genetic.

Indications that genetic factors are not major etiological contributors to EA/TEF have focused attention on other potential causes. Epidemiological evidence that teratogenic or infectious contributors account for the comparatively low recurrence risk and lack of familial aggregation of this disorder is, at best, circumstantial; agents studied to date have little role in the aetiology of EA/TEF. Nevertheless, the possibility remains that unrecognised environmental agents could still play a causative role. This contention is distinctly plausible given that the most successful and well-characterised animal model for EA involves Adriamycin exposure of the foetal rat in utero: environmental exposure to this single agent results in a consistent and reproducible phenotype.

This chapter summarises the epidemiological, clinical and molecular evidence for the existence of genetic contributors to the genesis of EA and then proceeds to summarise our knowledge of the molecular and cell biology of the condition, as derived from studies in humans and animal models. For a more detailed discussion of the issues contained in this chapter, two recent reviews have also covered this subject in detail: Shaw-Smith (J Med Genet 43:545–54, 2006) and Genevieve et al. (Clin Genet 71:392–9, 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shaw-Smith C. Oesophageal atresia, tracheo-oesophageal fistula, and the VACTERL association: review of genetics and epidemiology. J Med Genet. 2006;43:545–54.

    Article  CAS  PubMed  Google Scholar 

  2. Genevieve D, de Pontual L, Amiel J, Sarnacki S, Lyonnet S. An overview of isolated and syndromic oesophageal atresia. Clin Genet. 2007;71:392–9.

    Article  CAS  PubMed  Google Scholar 

  3. Depaepe A, Dolk H, Lechat MF. The epidemiology of tracheo-oesophageal fistula and oesophageal atresia in Europe. EUROCAT Working Group. Arch Dis Child. 1993;68:743–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Robert E, et al. An international collaborative study of the epidemiology of esophageal atresia or stenosis. Reprod Toxicol. 1993;7:405–21.

    Article  CAS  PubMed  Google Scholar 

  5. Torfs CP, Curry CJ, Bateson TF. Population-based study of tracheoesophageal fistula and esophageal atresia. Teratology. 1995;52:220–32.

    Article  CAS  PubMed  Google Scholar 

  6. Bianca S, Ettore G. Isolated esophageal atresia and perinatal risk factors. Dis Esophagus. 2003;16:39–40.

    Article  CAS  PubMed  Google Scholar 

  7. David TJ, O’Callaghan SE. Twinning and oesophageal atresia. Arch Dis Child. 1974;49:660–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Harris J, Kallen B, Robert E. Descriptive epidemiology of alimentary tract atresia. Teratology. 1995;52:15–29.

    Article  CAS  PubMed  Google Scholar 

  9. Orford J, et al. Oesophageal atresia in twins. Pediatr Surg Int. 2000;16:541–5.

    Article  CAS  PubMed  Google Scholar 

  10. Felix JF, Keijzer R, van Dooren MF, Rottier RJ, Tibboel D. Genetics and developmental biology of oesophageal atresia and tracheo-oesophageal fistula: lessons from mice relevant for paediatric surgeons. Pediatr Surg Int. 2004;20:731–6.

    Article  CAS  PubMed  Google Scholar 

  11. Anderka MT, Lin AE, Abuelo DN, Mitchell AA, Rasmussen SA. Reviewing the evidence for mycophenolate mofetil as a new teratogen: case report and review of the literature. Am J Med Genet A. 2009;149A:1241–8.

    Article  PubMed  Google Scholar 

  12. Ramirez A, Espinosa de los Monteros A, Parra A, De Leon B. Esophageal atresia and tracheoesophageal fistula in two infants born to hyperthyroid women receiving methimazole (Tapazol) during pregnancy. Am J Med Genet. 1992;44:200–2.

    Article  CAS  PubMed  Google Scholar 

  13. Foulds N, Walpole I, Elmslie F, Mansour S. Carbimazole embryopathy: an emerging phenotype. Am J Med Genet A. 2005;132A:130–5.

    Article  PubMed  Google Scholar 

  14. Clementi M, et al. Methimazole embryopathy: delineation of the phenotype. Am J Med Genet. 1999;83:43–6.

    Article  CAS  PubMed  Google Scholar 

  15. Di Gianantonio E, et al. Adverse effects of prenatal methimazole exposure. Teratology. 2001;64:262–6.

    Article  PubMed  Google Scholar 

  16. Myers AK, Reardon W. Choanal atresia – a recurrent feature of foetal carbimazole syndrome. Clin Otolaryngol. 2005;30:375–7.

    Article  CAS  PubMed  Google Scholar 

  17. Aramaki M, et al. Iridic and retinal coloboma associated with prenatal methimazole exposure. Am J Med Genet A. 2005;139A:156–8.

    Article  PubMed  Google Scholar 

  18. Warren J, Evans K, Carter CO. Offspring of patients with tracheo-oesophageal fistula. J Med Genet. 1979;16:338–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McMullen KP, Karnes PS, Moir CR, Michels VV. Familial recurrence of tracheoesophageal fistula and associated malformations. Am J Med Genet. 1996;63:525–8.

    Article  CAS  PubMed  Google Scholar 

  20. Brown AK, Roddam AW, Spitz L, Ward SJ. Oesophageal atresia, related malformations, and medical problems: a family study. Am J Med Genet. 1999;85:31–7.

    Article  CAS  PubMed  Google Scholar 

  21. Felix JF, Tibboel D, de Klein A. Chromosomal anomalies in the aetiology of oesophageal atresia and tracheo-oesophageal fistula. Eur J Med Genet. 2007;50:163–75.

    Article  PubMed  Google Scholar 

  22. Freeman SB, et al. Congenital gastrointestinal defects in Down syndrome: a report from the Atlanta and National Down Syndrome Projects. Clin Genet. 2009;75:180–4.

    Article  CAS  PubMed  Google Scholar 

  23. Bianca S, Bianca M, Ettore G. Oesophageal atresia and Down syndrome. Downs Syndr Res Pract. 2002;8:29–30.

    Article  PubMed  Google Scholar 

  24. Kallen B, Mastroiacovo P, Robert E. Major congenital malformations in Down syndrome. Am J Med Genet. 1996;65:160–6.

    Article  CAS  PubMed  Google Scholar 

  25. Masumoto K, Suita S, Taguchi T. Oesophageal atresia with a terminal deletion of chromosome 2q37.1. Clin Dysmorphol. 2006;15:213–6.

    Article  PubMed  Google Scholar 

  26. Doray B, Becmeur F, Girard-Lemaire F, Schluth C, Flori E. Esophageal and duodenal atresia in a girl with a 12q24.3-qter deletion. Clin Genet. 2002;61:468–71.

    Article  CAS  PubMed  Google Scholar 

  27. Dallapiccola B, Mingarelli R, Digilio C, Obregon MG, Giannotti A. Interstitial deletion del(17) (q21.3q23 or 24.2) syndrome. Clin Genet. 1993;43:54–5.

    Article  CAS  PubMed  Google Scholar 

  28. Marsh AJ, Wellesley D, Burge D, Ashton M, et al. Interstitial deletion of chromosome 17 (del(17)(q22q23.3)) confirms a link with oesophageal atresia. J Med Genet. 2000;37:701–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kilic SS, Gurpinar A, Yakut T, Egeli U, Dogruyol H. Esophageal atresia and tracheo-esophageal fistula in a patient with Digeorge syndrome. J Pediatr Surg. 2003;38:E21–3.

    Article  PubMed  Google Scholar 

  30. Digilio MC, Marino B, Bagolan P, Giannotti A, Dallapiccola B. Microdeletion 22q11 and oesophageal atresia. J Med Genet. 1999;36:137–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Giorda R, et al. Selective disruption of muscle and brain-specific BPAG1 isoforms in a girl with a 6;15 translocation, cognitive and motor delay, and tracheo-oesophageal atresia. J Med Genet. 2004;41:e71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Williamson KA, et al. Mutations in SOX2 cause anophthalmia-esophageal-genital (AEG) syndrome. Hum Mol Genet. 2006;15:1413–22.

    Article  CAS  PubMed  Google Scholar 

  33. Fantes J, et al. Mutations in SOX2 cause anophthalmia. Nat Genet. 2003;33:461–3.

    Article  CAS  PubMed  Google Scholar 

  34. Que J, et al. Multiple dose-dependent roles for Sox2 in the patterning and differentiation of anterior foregut endoderm. Development. 2007;134:2521–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Que J, Luo X, Schwartz RJ, Hogan BL. Multiple roles for Sox2 in the developing and adult mouse trachea. Development. 2009;136:1899–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jongmans MC, et al. CHARGE syndrome: the phenotypic spectrum of mutations in the CHD7 gene. J Med Genet. 2006;43:306–14.

    Article  CAS  PubMed  Google Scholar 

  37. Vissers LE, et al. Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nat Genet. 2004;36:955–7.

    Article  CAS  PubMed  Google Scholar 

  38. Tellier AL, et al. CHARGE syndrome: report of 47 cases and review. Am J Med Genet. 1998;76:402–9.

    Article  CAS  PubMed  Google Scholar 

  39. Delahaye A, et al. Familial CHARGE syndrome because of CHD7 mutation: clinical intra- and interfamilial variability. Clin Genet. 2007;72:112–21.

    Article  CAS  PubMed  Google Scholar 

  40. Schnetz MP, et al. Genomic distribution of CHD7 on chromatin tracks H3K4 methylation patterns. Genome Res. 2009;19:590–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Layman-Pleet L, Jackson CC, Chou S, Boycott KM. Feingold syndrome: a rare but important cause of syndromic tracheoesophageal fistula. J Pediatr Surg. 2007;42:E1–3.

    Article  PubMed  Google Scholar 

  42. Celli J, van Bokhoven H, Brunner HG. Feingold syndrome: clinical review and genetic mapping. Am J Med Genet A. 2003;122A:294–300.

    Article  PubMed  Google Scholar 

  43. van Bokhoven H, et al. MYCN haploinsufficiency is associated with reduced brain size and intestinal atresias in Feingold syndrome. Nat Genet. 2005;37:465–7.

    Article  PubMed  CAS  Google Scholar 

  44. Marcelis CL, et al. Genotype-phenotype correlations in MYCN-related Feingold syndrome. Hum Mutat. 2008;29:1125–32.

    Article  CAS  PubMed  Google Scholar 

  45. Stanton BR, Perkins AS, Tessarollo L, Sassoon DA, Parada LF. Loss of N-myc function results in embryonic lethality and failure of the epithelial component of the embryo to develop. Genes Dev. 1992;6:2235–47.

    Article  CAS  PubMed  Google Scholar 

  46. Berrebi D, et al. Bilateral adrenal neuroblastoma and nephroblastoma occurring synchronously in a child with Fanconi’s anemia and VACTERL syndrome. J Pediatr Surg. 2006;41:e11–4.

    Article  PubMed  Google Scholar 

  47. Holden ST, et al. Fanconi anaemia complementation group B presenting as X linked VACTERL with hydrocephalus syndrome. J Med Genet. 2006;43:750–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. De Falco F, et al. X-linked Opitz syndrome: novel mutations in the MID1 gene and redefinition of the clinical spectrum. Am J Med Genet A. 2003;120A:222–8.

    Article  PubMed  Google Scholar 

  49. Quaderi NA, et al. Opitz G/BBB syndrome, a defect of midline development, is due to mutations in a new RING finger gene on Xp22. Nat Genet. 1997;17:285–91.

    Article  CAS  PubMed  Google Scholar 

  50. Granata A, Quaderi NA. Asymmetric expression of Gli transcription factors in Hensen’s node. Gene Expr Patterns. 2005;5:529–31.

    Article  CAS  PubMed  Google Scholar 

  51. Motoyama J, Liu J, Mo R, Ding Q, et al. Essential function of Gli2 and Gli3 in the formation of lung, trachea and oesophagus. Nat Genet. 1998;20:54–7.

    Article  CAS  PubMed  Google Scholar 

  52. Numanoglu V, et al. Supernumerary nostrils together with oesophageal atresia and patent ductus arteriosus. Clin Dysmorphol. 2007;16:269–70.

    Article  PubMed  Google Scholar 

  53. Wieczorek D, et al. Esophageal atresia, hypoplasia of zygomatic complex, microcephaly, cup-shaped ears, congenital heart defect, and mental retardation – new MCA/MR syndrome in two affected sibs and a mildly affected mother? Am J Med Genet A. 2007;143A:1135–42.

    Article  PubMed  Google Scholar 

  54. Chittmittrapap S, Spitz L, Kiely EM, Brereton RJ. Oesophageal atresia and associated anomalies. Arch Dis Child. 1989;64:364–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Czeizel A. Schisis-association. Am J Med Genet. 1981;10:25–35.

    Article  CAS  PubMed  Google Scholar 

  56. Cardoso WV, Lu J. Regulation of early lung morphogenesis: questions, facts and controversies. Development. 2006;133:1611–24.

    Article  CAS  PubMed  Google Scholar 

  57. Kuo CT, Morrisey EE, Anandappa R, Sigrist K, et al. GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev. 1997;11:1048–60.

    Article  CAS  PubMed  Google Scholar 

  58. Morrisey EE, Tang Z, Sigrist K, Lu MM, et al. GATA6 regulates HNF4 and is required for differentiation of visceral endoderm in the mouse embryo. Genes Dev. 1998;12:3579–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kimura S, Hara Y, Pineau T, Fernandez-Salguero P, et al. The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain and pituitary. Genes Dev. 1996;10:60–9.

    Article  CAS  PubMed  Google Scholar 

  60. Kumar M, Melton D. Pancreas specification: a budding question. Curr Opin Genet Dev. 2003;13:401–7.

    Article  CAS  PubMed  Google Scholar 

  61. Bort R, Martinez-Barbera JP, Beddington RS, Zaret KS. Hex homeobox gene-dependent tissue positioning is required for organogenesis of the ventral pancreas. Development. 2004;131:797–806.

    Article  CAS  PubMed  Google Scholar 

  62. Tiso N, Filippi A, Pauls S, Bortolussi M, et al. BMP signalling regulates anteroposterior endoderm patterning in zebrafish. Mech Dev. 2002;118:29–37.

    Article  CAS  PubMed  Google Scholar 

  63. Kelly SE, Bachurski CJ, Burhans MS, Glasser SW. Transcription of the lung-specific surfactant protein C gene is mediated by thyroid transcription factor 1. J Biol Chem. 1996;271:6881–8.

    Article  CAS  PubMed  Google Scholar 

  64. Sutherland D, Samakovlis C, Krasnow MA. Branchless encodes a Drosophila FGF homolog that controls tracheal cell migration and the pattern of branching. Cell. 1996;87:1091–101.

    Article  CAS  PubMed  Google Scholar 

  65. Williams A, Qi BQ, Beasley SW. Three dimensional imaging clarifies the process of tracheo oesophageal separation in the rat. J Pediatr Surg. 2003;38:173–7.

    Article  PubMed  Google Scholar 

  66. Zaw Tun HA. The tracheoesophageal septum – fact or fantasy? Acta Anat. 1982;114:1–21.

    Article  CAS  PubMed  Google Scholar 

  67. Sutliff KS, Hutchins GM. Separation of the respiratory and digestive tracts in the human embryo: crucial role of the tracheoesophageal sulcus. Anat Rec. 1994;238:237–47.

    Article  CAS  PubMed  Google Scholar 

  68. O’Rahilly MD, Muller F. Respiratory and alimentary relationships in staged human embryos: new embryological data and congenital abnormalities. Ann Oto Rhinol Laryngol. 1984;93:421–9.

    Article  Google Scholar 

  69. Smith E. The early development of the trachea and esophagus in relation to atresia of the esophagus and tracheoesophageal fistula. Contrib Embryol. 1957;36:43–57.

    Google Scholar 

  70. Rosenthal AH. Congenital atresia of the esophagus with tracheoesophageal fistula: report of 8 cases. Arch Pathol. 1931;12:756–72.

    Google Scholar 

  71. Weaver M, Dunn NR, Hogan BL. Bmp4 and Fgf10 play opposing roles during lung bud morphogenesis. Development. 2000;127:2695–704.

    CAS  PubMed  Google Scholar 

  72. Que J, Choi M, Ziel JW, Klingensmith J, Hogan BL. Morphogenesis of the trachea and esophagus: current players and new roles for noggin and Bmps. Differentiation. 2006;74:422–37.

    Article  CAS  PubMed  Google Scholar 

  73. Qi BQ, Beasley SW. Preliminary evidence that cell death may contribute to separation of the trachea from the primitive foregut in the rat embryo. J Pediatr Surg. 1998;13:1660–5.

    Article  Google Scholar 

  74. Ioannides AS, Massa V, Ferraro E, Cecconi F, et al. Foregut separation and tracheo-oesophageal malformations: the role of tracheal growth, dorso-ventral patterning and programmed cell death. Dev Biol. 2010;337:351–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tebar M, Destree O, de Vree WJ, Have-Opbroek AA. Expression of Tcf/Lef and sFrp and localisation of beta-catenin in the developing mouse lung. Mech Dev. 2001;109:437–40.

    Article  CAS  PubMed  Google Scholar 

  76. Zhao J, Bu D, Lee M, Slavkin HC, et al. Abrogation of transforming growth factor-beta type II receptor stimulates embryonic mouse lung branching morphogenesis in culture. Dev Biol. 1996;180:242–57.

    Article  CAS  PubMed  Google Scholar 

  77. Li Y, Zhang H, Choi SC, Litingtung Y, et al. Sonic hedgehog signalling regulates Gli3 processing, mesenchymal proliferation, and differentiation during mouse lung organogenesis. Dev Biol. 2004;270:214–31.

    Article  CAS  PubMed  Google Scholar 

  78. Mahlapuu M, Enerback S, Carlsson P. Haploinsufficiency of the forkhead gene Foxf1, a target for sonic hedgehog signaling, causes lung and foregut malformations. Development. 2001;128:2397–406.

    CAS  PubMed  Google Scholar 

  79. Creisera CA, Connelly PR, Marmureanu AR, Colen KL, et al. Esophageal atresia with tracheoesophageal fistula: suggested mechanism in faulty organogenesis. J Pediatr Surg. 1999;34:204–8.

    Article  Google Scholar 

  80. Qi BQ, Merei J, Farmer P, Hasthorpe S, Myers NA, Beasley SW, Hutson JM. The vagus and recurrent laryngeal nerves in the rodent experimental model of esophageal atresia. J Pediatr Surg. 1997;32:1580–6.

    Article  CAS  PubMed  Google Scholar 

  81. Beasley SW. In: Beasley SW, Myers NA, Auldist AW, editors. Oesophageal atresia. London: Chapman and Hall Medical Publishing; 1991.

    Chapter  Google Scholar 

  82. Beasley SW, Williams AK, Qi BQ, Vleesch Dubois VN. The development of the proximal oesophageal pouch in the Adriamycin rat model of esophageal atresia and tracheoesophageal fistula. Pediatr Surg Int. 2004;20:548–50.

    Article  CAS  PubMed  Google Scholar 

  83. Babic MS. Development of the notochord in normal and malformed human embryos and fetuses. Int J Dev Biol. 1991;35:345–52.

    CAS  PubMed  Google Scholar 

  84. Riddle RD, et al. Sonic hedgehog mediates the polarizing activity of the ZPA. Cell. 1993;75:1401–16.

    Article  CAS  PubMed  Google Scholar 

  85. Williams AK, Qi BQ, Beasley SW. Demonstration of abnormal notochord development by 3D reconstructive imaging in the rat model of oesophageal atresia. Pediatr Surg Int. 2001;17:21–4.

    Article  CAS  PubMed  Google Scholar 

  86. Qi B, Beasley SW. Relationship of the notochord to foregut development in the fetal rat model of esophageal atresia. J Pediatr Surg. 1999;34:1593–8.

    Article  CAS  PubMed  Google Scholar 

  87. Possogoel AK, et al. Notochord involvement in experimental esophageal atresia. Pediatr Surg Int. 1999;15:201–5.

    Article  Google Scholar 

  88. Sasaki T, Kusafuka T, Okada A. Analysis of the development of normal foregut and tracheoesophageal fistula in an adriamycin rat model using three-dimensional image reconstruction. Surg Today. 2001;31:133–9.

    Article  CAS  PubMed  Google Scholar 

  89. Orford J, Manglick P, Cass DT, Tam PP. Mechanisms for the development of esophageal atresia. J Pediatr Surg. 2001;36:985–94.

    Article  CAS  PubMed  Google Scholar 

  90. Vleesch Dubois VN, Quan Qi B, Beasley SW, Williams A. Abnormal branching and regression of the notochord and its relationship to foregut abnormalities. Eur J Pediatr Surg. 2002;12:83–9.

    Article  CAS  PubMed  Google Scholar 

  91. Arsic D, Cameron V, Ellmers L, Qi BQ, Keenan J, Beasley SW. Adriamycin disruption of the Shh–Gli pathway is associated with abnormalities of foregut development. J Pediatr Surg. 2004;39:1747–53.

    Article  PubMed  Google Scholar 

  92. Ioannides AS, Chaudhry B, Henderson DJ, Spitz L, et al. Dorsoventral patterning in oesophageal atresia with tracheo-oesophageal fistula: evidence from a new mouse model. J Pediatr Surg. 2002;37:185–91.

    Article  PubMed  Google Scholar 

  93. Narita T, et al. Sonic hedgehog expression in developing chick digestive organs is regulated by epithelia-mesenchymal interactions. Dev Growth Differ. 1998;40:67–74.

    Article  CAS  PubMed  Google Scholar 

  94. Bitgood MJ, McMahon AP. Hedgehog and BMP genes are co-expressed at many diverse sites of cell-cell interaction in the mouse embryo. Dev Biol. 1995;172:126–38.

    Article  CAS  PubMed  Google Scholar 

  95. Litingtung Y, Lei L, Westphal H, Chiang C. Sonic hedgehog is essential to foregut development. Nat Genet. 1998;20:58–61.

    Article  CAS  PubMed  Google Scholar 

  96. Ramalho-Santos M, Melton DA, McMahon AP. Hedgehog signals regulate multiple aspects of gastrointestinal development. Development. 2000;127:2763–72.

    CAS  PubMed  Google Scholar 

  97. Sukegawa A, Narita T, Kameda T, Saitoh K, et al. The concentric structure of the developing gut is regulated by Sonic hedgehog derived from endodermal epithelium. Development. 2000;127:1971–80.

    CAS  PubMed  Google Scholar 

  98. Arsic D, Keenan J, Qi BQ, Beasley SW. Differences in the levels of Sonic hedgehog protein during early foregut development caused by exposure to Adriamycin give clues to the role of the Shh gene in esophageal atresia. Pediatr Surg Int. 2003;19:463–6.

    Article  PubMed  Google Scholar 

  99. Roessler E, Belloni E, Gaugenz K, et al. Mutations in the C-terminal domain of Sonic hedgehog cause holoprosencephaly. Hum Mol Genet. 1997;11:1847–53.

    Article  Google Scholar 

  100. Porter JA, von Kessler DP, Ekker SC, et al. The product of hedgehog autoproteolytic cleavage active in local and long-range signalling. Nature. 1995;374:363–6.

    Article  CAS  PubMed  Google Scholar 

  101. Park HL, Bai C, Platt KA, Matise MP, et al. Mouse Gli mutants are viable but have defects in SHH signaling in combination with a Gli2 mutation. Development. 2000;127:1593–605.

    CAS  PubMed  Google Scholar 

  102. Chiang C, Litingtung Y, Lee E, Young KE, et al. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature. 1996;383:407–13.

    Article  CAS  PubMed  Google Scholar 

  103. Odent S, Atti-Bitach T, Blayau M, et al. Expression of the Sonic Hedgehog (SHH) gene during early human development and phenotypic expression of new mutations causing holoprosencephaly. Hum Mol Genet. 1999;8:1683–9.

    Article  CAS  PubMed  Google Scholar 

  104. Minoo P, Su G, Drum H, Bringas P, et al. Defects in tracheoesophageal and lung morphogenesis in Nkx2.1 (−/−) mouse embryos. Dev Biol. 1999;209:60–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spencer W. Beasley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Robertson, S.P., Beasley, S.W. (2017). The Genetics and Molecular Biology of Oesophageal Development. In: Till, H., Thomson, M., Foker, J., Holcomb III, G., Khan, K. (eds) Esophageal and Gastric Disorders in Infancy and Childhood. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11202-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11202-7_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11201-0

  • Online ISBN: 978-3-642-11202-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics