Constrained Control of Weakly Coupled Nonlinear Systems Using Neural Network

  • Dipak M. Adhyaru
  • I. N. Kar
  • M. Gopal
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5909)

Abstract

In this paper, a new algorithm is proposed for the constrained control of weakly coupled nonlinear systems. The controller design problem is solved by solving Hamilton-Jacobi-Bellman(HJB) equation with modified cost to tackle constraints on the control input and unknown coupling. In the proposed controller design framework, coupling terms have been formulated as model uncertainties. The bounded controller requires the knowledge of the upper bound of the uncertainty. In the proposed algorithm, Neural Network (NN) is used to approximate the solution of HJB equation using least squares method. Necessary theoretical and simulation results are presented to validate proposed algorithm.

Keywords

Weak coupling HJB equation Bounded control Nonlinear system Lyapunov stability 

References

  1. 1.
    Kokotovic, P., Perkins, W., Cruz, J., D’Ans, G.: e-coupling for near optimum design of large scale linear systems. Inst. Elect. Eng. Proc. Part D 116, 889–892 (1969)MathSciNetGoogle Scholar
  2. 2.
    Gajic, Z., Shen, X.: Decoupling transformation for weakly coupled linear systems. Int. J. Control 50, 1515–1521 (1989)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Gajic, Z., Shen, X.: Parallel Algorithms for Optimal Control of Large Scale Linear Systems. Springer, London (1992)Google Scholar
  4. 4.
    Aganovic, Z., Gajic, Z.: Optimal control of weakly coupled bilinear systems. Automatica 29, 1591–1593 (1993)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Aganovic, Z., Gajic, Z.: Linear optimal control of bilinear systems: With applications to singular perturbations and weak coupling. Springer, London (1995)MATHGoogle Scholar
  6. 6.
    Cebuhar, W., Costanza, V.: Approximation procedures for the optimal control for bilinear and nonlinear systems. J. Optim. Theory Appl. 43(4), 615–627 (1984)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Abu-Khalaf, M., Lewis, F.L.: Nearly optimal state feedback control of constrained nonlinear systems using a neural networks HJB approach. Annual Reviews in Control 28(2), 239–251 (2004)CrossRefGoogle Scholar
  8. 8.
    Abu-Khalaf, M., Huang, J., Lewis, F.L.: Nonlinear H2/H ∞  constrained feedback control: A practical design approach using neural networks. Springer, Heidelberg (2006)Google Scholar
  9. 9.
    Gopal, M.: Modern Control System Theory, 2nd edn. New Age International Publishers, New Delhi (1993)Google Scholar
  10. 10.
    Kim, Y.J., Kim, B.S., Lim, M.T.: Composite control for singularly perturbed nonlinear systems via successive Galerkin approximation. DCDIS, Series B: Appl. Algorithms 10(2), 247–258 (2003)MATHMathSciNetGoogle Scholar
  11. 11.
    Kim, Y.J., Kim, B.S., Lim, M.T.: Finite-time composite control for a class of singularly perturbed nonlinear systems via successive Galerkin approximation. Inst. Elect. Eng. Proc.- Control Theory Appl. 152(5), 507–512 (2005)CrossRefGoogle Scholar
  12. 12.
    Kim, Y.J., Lim, M.T.: Parallel Optimal Control for Weakly Coupled Nonlinear Systems Using Successive Galerkin Approximation. IEEE Transactions on Automatic Control 53(6) (2008)Google Scholar
  13. 13.
    Hornik, K., Stinchcombe, M., White, H.: Universal approximation of an unknown mapping and its derivatives using multilayer feed-forward networks. Neural Network 3, 551–560 (1990)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Dipak M. Adhyaru
    • 1
  • I. N. Kar
    • 2
  • M. Gopal
    • 2
  1. 1.Instrumentation and Control Engineering Department, Institute of TechnologyNirma UniversityAhmedabadIndia
  2. 2.Department of Electrical EngineeringIndian Institute of TechnologyDelhi

Personalised recommendations