Metric in Feature Space

  • C. A. Murthy
  • Sourav Pradhan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5909)


In this paper our purpose is to define a metric in feature space. The metric finds the correlation distance between two features. It may be used in many applications. An application showing the utility of the proposed metric for feature selection is described here. The performance of the feature selection method is found to be comparable to other feature selection methods.


metric correlation PCA partition entropy regression 


  1. 1.
    Liu, H., Motoda, H.: Computational Methods of Feature Selection. Chapman and Hall/Crc Data Mining and Knowledge Discovery Series (2007)Google Scholar
  2. 2.
    Dash, M., Liu, H.: Consistency-based search in feature selection. Artif. Intell. 151(1-2), 155–176 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Liu, H., Yu, L.: Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. Knowl. Data Eng. 17(4), 491–502 (2005)CrossRefGoogle Scholar
  4. 4.
    Estévez, P.A., Tesmer, M., Perez, C.A., Zurada, J.M.: Normalized mutual information feature selection. IEEE Trans. on Neural Networks 20(2), 189–201 (2009)CrossRefGoogle Scholar
  5. 5.
    Devijver, P., Kittler, J.: Pattern Recognition: A Statistical Approach. Prentice Hall, Engle Cliffs (1982)zbMATHGoogle Scholar
  6. 6.
    Mitra, P., Murthy, C.A., Pal, S.K.: Unsupervised Feature Selection Using Feature Similarity. IEEE Trans. Pattern Analysis and Machine Intelligence 24(3), 301–312 (2002)CrossRefGoogle Scholar
  7. 7.
    Blake, C.L., Merz, C.J.: UCI Repository of Machine Learning Database, Univ. of California, Irvine, Dept. of Information and Computer Science (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • C. A. Murthy
    • 1
  • Sourav Pradhan
    • 1
  1. 1.Machine Intelligence UnitIndian Statistical InstituteKolkataIndia

Personalised recommendations