Evaluation of Feature Selection Measures for Steganalysis

  • G. K. Rajput
  • R. K. Agrawal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5909)


Steganalysis has attracted researchers’ attention overwhelmingly in last few years which discriminate stego images from non-stego images. The performance of a Steganalysis depends not only on the choice of classifier but also on features that are used to represent the image. Features extracted from images may contain irrelevant and redundant features which makes them inefficient for machine learning. Relevant features not only decrease the processing time to train a classifier but also provide better generalization. In this paper, kullback divergence measure, chernoff distance measure and linear regression are used for relevant feature selection. The performance of steganalysis using different measures used for feature selection is compared and evaluated in terms of classification error and computation time of training classifier. Experimental results show that Linear regression measure used for feature selection outperforms other measures used for feature selection in terms of both classification error and compilation time.


Steganalysis Feature Selection Linear Regression Kullback Divergence Chernoff Distance Measure 


  1. 1.
    Harmsen, J., Pearlman, W.: Steganalysis of additive noise modelable information hiding. In: Proc. SPIE Security and Watermarking of Multimedia Contents V, Santa Clara, CA, January 2003, vol. 5022 (2003)Google Scholar
  2. 2.
    Farid, H.: Detecting hidden messages using higher-order statistical models. In: Proc. of the IEEE int’l Conf. on Image processing 2002, vol. 2, pp. 905–908. IEEE, New York (2002)CrossRefGoogle Scholar
  3. 3.
    Lyu, S., Farid, H.: Steganalysis using higher-order image statistics. IEEE Trans. Inf. Forensics Security 1(1), 111–119 (2006)CrossRefGoogle Scholar
  4. 4.
    Mehrabi, M.A., Faez, K., Bayesteh, A.R.: Image Steganalysis on Statistical moments of Wavelet Subband histograms in Different Frequencies and Support Vector Machine. In: Proc. of Third int’l Conf. on Natural Computation, August 24-27 (2007)Google Scholar
  5. 5.
    Guyon, I., Elisseeff, A.: An Introduction to Variable and feature Selection. Journal of Machine Learning Research (3), 1157–1182 (2003)Google Scholar
  6. 6.
    Lie, W.-n., Lin, G.-S.: A Feature-Based Classification Technique for Blind Image Steganalysis. Proc. IEEE Transaction on Multimedia 7(6) (December 2005)Google Scholar
  7. 7.
    Kohavi, R., John, G.: Wrapper for feature subset selection. Artificial Intelligence (1-2), 273–324 (1997)Google Scholar
  8. 8.
    Ruiz, R., et al.: Incremental wrapper based gene selection from microarray data for cancer classification. Pattern Recognition 39(12), 2383–2392 (2006)CrossRefGoogle Scholar
  9. 9.
    Fridrich, J., Goljan, m.: Practical steganalysis: State of the art. In: SPIE photonics West, Electronic Imaging, San Jose, CA (2002)Google Scholar
  10. 10.
    Johanson, N., Jajodia, S.: Exploring steganography: seeing the unseen. IEEE Computer, 26–34 (1998)Google Scholar
  11. 11.
    Westfeld, A., Pfitzmann, A.: Attacks on steganographic systems. In: Pfitzmann, A. (ed.) IH 1999. LNCS, vol. 1768, pp. 61–75. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Guyon, I., et al.: Gene Selection for cancer classification using support vector machine. Machine Learning (46), 263–268 (2003)Google Scholar
  13. 13.
    Duda Richard, O., Hart Peter, E., Stork David, G.: Pattern Classification, 2nd edn. Wiley India (P) Ltd., ChichesterGoogle Scholar
  14. 14.
    Pierre, A.D., Kittler, J.: Pattern Recognition: A Statistical Approach. PHI (1982)Google Scholar
  15. 15.
    Tibsrani, R., et al.: Diagnosis of multiple cancer types by shrunken centriods of gene expression. Proc. Natl. Acad. Sci. USA (99), 6567–6572 (2002)Google Scholar
  16. 16.
    Han-Saem, P., et al.: Forward selection Method with regression analysis for optimal gene selection in cancer classification. International Journal of Computer Mathematics 84(5), 653–668 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Kahn, D.: The history of steganography. In: Anderson, R. (ed.) IH 1996. LNCS, vol. 1174. Springer, Heidelberg (1996)Google Scholar
  18. 18.
    Pevný, T., Fridrich, J.: Determining stego algorithm for JPEG images. IEEE Proc. -Iinf. Security 153(3) (September 2006)Google Scholar
  19. 19.
    Provos, N., Honeyman, P.: Hide and Seek: An Introduction to Steganography. In: IEEE Security and Privacy. The IEEE Computer Society, Los Alamitos (2003)Google Scholar
  20. 20.
    Wang, Y.: Optimized Feature Extraction for Learning-Based Image Steganalysis. IEEE Transactions on Information Forensics and Security @(1) (March2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • G. K. Rajput
    • 1
  • R. K. Agrawal
    • 1
  1. 1.School of Computer and Systems SciencesJawaharlal Nehru UniversityNew Delhi

Personalised recommendations